FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Multirate Output Feedback Control for Enhanced Position Control of Rotary Servo Motion Plant (SRV02)

Author(s): Hardik Kannad1*, Hardik Patel2, Rutvik Shukla3, Ankur Gajjar4, Manoj Khediya5, Ankit Shah6

Publisher : FOREX Publication

Published : 25 August 2025

e-ISSN : 2347-470X

Page(s) : 412-418




Hardik Kannad, Assistant Professor, Instrumentation and Control Engineering Department, Government Engineering College, Rajkot, Gujarat, India; Email: kannad.hardik@gmail.com

Hardik Patel, Assistant Professor, Instrumentation and Control Engineering Department, Government Engineering College, Rajkot, Gujarat, India; Email: er.hardik24@gmail.com

Rutvik Shukla, Assistant Professor, Instrumentation and Control Engineering Department, Government Engineering College, Rajkot, Gujarat, India;Email: rutvikshukla@gmail.com

Ankur Gajjar,Assistant Professor, Instrumentation and Control Engineering Department, Shantilal Shah Engineering College, Bhavnagar, Gujarat, India; Email: ankurgajjar.91@gmail.com

Manoj Khediya, Assistant Professor, Instrumentation and Control Engineering Department, Vishwakarma Government Engineering College, Ahmedabad, Gujarat, India; Email: mdkhediya@vgecg.ac.in

Ankit Shah,Assistant Professor, Instrumentation and Control Engineering Department, L. D. College of Engineering, Ahmedabad, Gujarat, India; Email: ankitshah.ic@ldce.ac.in

    [1] Arents, J.; Greitans, M. Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. Applied Sciences 2022, 12 (2), 937. https://doi.org/10.3390/app12020937.
    [2] Halwani, M.; Ayyad, A.; AbuAssi, L.; Abdulrahman, Y.; Almaskari, F.; Hassanin, H.; Abusafieh, A.; Zweiri, Y. A Novel Vision-Based Multi-Functional Sensor for Normality and Position Measurements in Precise Robotic Manufacturing. Precision Engineering 2024, 88, 367–381. https://doi.org/10.1016/j.precisioneng.2024.02.015.
    [3] Zhu, D.; Feng, X.; Xu, X.; Yang, Z.; Li, W.; Yan, S.; Ding, H. Robotic Grinding of Complex Components: A Step towards Efficient and Intelligent Machining – Challenges, Solutions, and Applications. Robotics and Computer-Integrated Manufacturing 2020, 65, 101908. https://doi.org/10.1016/j.rcim.2019.101908.
    [4] Kumar, R.; Sharma, V.; Kumar, V. Modelling and Comparative Analysis of Optimally Tuned PID Controllers in DC Motor Systems. 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, January 11–12, 2024; IEEE, 2024. https://doi.org/10.1109/icaect60202.2024.10469200.
    [5] RamaKrishnan, A.; Shunmugalatha, A.; Premkumar, K. An Improved Tuning of PID Controller for PV Battery-Powered Brushless DC Motor Speed Regulation Using Hybrid Horse Herd Particle Swarm Optimization. International Journal of Photoenergy 2023, 2023, 1–23. https://doi.org/10.1155/2023/2777505.
    [6] Jalgham, F.; Zaggout, M.; Larbah, E. L. Design of Lead, Lag and Lead-Lag Compensators Based on Frequency Response Approach. The International Journal of Engineering & Information Technology (IJEIT) 2022, 8 (2), 56–61. https://doi.org/10.36602/ijeit.v8i2.150.
    [7] Johan, K. Feedback Systems: An Introduction for Scientists and Engineers, Second Edition.; Princeton University Pres: S.L., 2021.
    [8] Sanfelice, R. G. Hybrid Feedback Control; Princeton University Press, 2021.
    [9] Ma’arif, A.; Setiawan, N. R. Control of DC Motor Using Integral State Feedback and Comparison with PID: Simulation and Arduino Implementation. Journal of Robotics and Control (JRC) 2021, 2 (5). https://doi.org/10.18196/jrc.25122.
    [10] Elmorshedy, M. F.; Xu, W.; Fayez F. M. El-Sousy; Md. Rabiul Islam; Ahmed, A. A. Recent Achievements in Model Predictive Control Techniques for Industrial Motor: A Comprehensive State-of-The-Art. IEEE Access 2021, 9, 58170–58191. https://doi.org/10.1109/access.2021.3073020.
    [11] Ma’arif, A.; Çakan, A. Simulation and Arduino Hardware Implementation of DC Motor Control Using Sliding Mode Controller. J Robot Control (JRC) 2021, 2, 582-587. https://doi.org/10.18196/jrc.26140.
    [12] Hakan KIZMAZ. Comparative Analysis of Optimal Control Strategies: LQR, PID, and Sliding Mode Control for DC Motor Position Performance. Gazi university journal of science part a: engineering and innovation 2023, 10 (4), 571–592. https://doi.org/10.54287/gujsa.1393092.
    [13] Shao, L.; Yang, J.; Li, S. Output Feedback Anti-Disturbance Control for Slow Sampled-Data Systems Combined with Model Predictive Control: An Alternating Predictive Observer Approach for Accelerating Sampling Rates. 2023 China Automation Congress (CAC), Chongqing, China, November 17–19, 2023; IEEE, 2023. https://doi.org/10.1109/cac59555.2023.10450784.
    [14] Patel, A.; Purwar, S. Design of Event Trigger Based Multirate Sliding Mode Load Frequency Controller for Interconnected Power System. ISA Transactions 2022. https://doi.org/10.1016/j.isatra.2022.12.001.
    [15] Shen, Y.; Wang, Z.; Dong, H.; Liu, H. Multi-sensor multi-rate fusion estimation for networked systems: Advances and perspectives. Information Fusion 2022, 82, 19–27. https://doi.org/10.1016/j.inffus.2021.12.005.
    [16] Li, X.; Cheng, K.; Wang, Z.; Zhu, L.; Wei, G. Distributed interval observer-based robust control for multirate systems under the FlexRay protocol. Journal of the Franklin Institute 2024, 106708. https://doi.org/10.1016/j.jfranklin.2024.106708.
    [17] Hadi, A. R. S.; Abaas, S.; Al-Modaffer, A. M.; Mawat, R. H. Enhancing Stability and Regulation of Output Voltage in Boost Converters with Learning Sliding Mode Control. Kufa Journal of Engineering 2024, 15 (3), 134–147. https://doi.org/10.30572/2018/kje/150308.
    [18] Issa, A. H.; Baqir, H. F. Fault Detection and Isolation Based on Hybrid Sliding Mode Observer and Fuzzy Logic. Kufa Journal of Engineering 2021, 6 (1), 93–102. https://doi.org/10.30572/2018/kje/611316.
    [19] Ahrens, J. H.; Xiaobo Tan; Khalil, H. K. Multirate Sampled-Data Output Feedback Control with Application to Smart Material Actuated Systems. IEEE Transactions on Automatic Control 2009, 54 (11), 2518–2529. https://doi.org/10.1109/tac.2009.2031204.
    [20] Rehimi, S.; Bevrani, H.; Urabe, C. T.; Kato, T. Grid Forming Converter Control System Synthesis: A Static Output Feedback Approach. IEEJ Transactions on Electrical and Electronic Engineering 2024. https://doi.org/10.1002/tee.24063.
    [21] Vernekar, P.; Bandal, V. Sliding mode control for magnetic levitation systems with mismatched uncertainties using multirate output feedback. International Journal of Dynamics and Control 2023. https://doi.org/10.1007/s40435-023-01151-3.
    [22] Janardhanan, S.; Bandyopadhyay, B. A new approach for the design of fast output sampling feedback controller. 1st National Conference on Instrumentation & Control (ICECON'03), 2003.
    [23] Apkarian, J.; Lévis, M.; Gurocak, H. USER MANUAL SRV02 Rotary Servo Base Unit Set up and Configuration Developed By. https://nps.edu/documents/105873337/0/SRV02+Base+Unit+User+Manual.pdf/ce50a48e-d169-4652-a9df-ae979af10094?t=1441916178000 (accessed 2024-05-18).
    [24] Salt, J.; Alcaina, J.; Cuenca, Á.; Baños, A. Multirate control strategies for avoiding sample losses. Application to UGV path tracking. ISA Transactions 2020, 101, 130–146. https://doi.org/10.1016/j.isatra.2020.01.025.
    [25] Chen, G.; Zhu, M.; Xia, J.; Park, J. H. Fuzzy Dynamic Output Feedback for Networked Control Active Suspension Systems: An IQC-Based Heuristic Multirate Sampling Iterative Controller Algorithm. IEEE Transactions on Industrial Electronics 2024, 1–11. https://doi.org/10.1109/tie.2024.3493207.
    [26] Zhang, Y.; Zou, L.; Song, B.; Zhao, Z.; Wang, Y. Neural-network-based output feedback control for networked multirate systems: A bit rate allocation scheme. Information Sciences 2023, 637, 118952. https://doi.org/10.1016/j.ins.2023.118952.

Hardik Kannad, Hardik Patel, Rutvik Shukla, Ankur Gajjar, Manoj Khediya, and Ankit Shah(2025),Multirate Output Feedback Control for Enhanced Position Control of Rotary Servo Motion Plant (SRV02). IJEER 13(3), 412-418. DOI: 10.37391/IJEER.130304.