FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Review Article |

Optimizing Beamforming in Massive MIMO Systems Using Machine Learning Approaches: A Comprehensive Review

Author(s): Suhas Kakde1*,Dr. Sanjay Pokle2

Publisher : FOREX Publication

Published : 30 September 2025

e-ISSN : 2347-470X

Page(s) : 515-523




Suhas Kakde,Research Scholar, Electronics Engineering, School of Electrical and Electronics Engineering, Ramdeobaba University, Nagpur, Maharashtra, India;Email: suhas.kakde@gmail.com

Dr. Sanjay Pokle, Professor, Electronics & Communication Engineering Department, School of Electrical and Electronics Engineering, Ramdeobaba University, Nagpur, Maharashtra, India; Email: poklesb@rknec.edu

    [1] Mamillapally, K. C., & Dasari, R. K. (2024). Deep Learning-Based Channel Estimation and Beamforming Architecture for Massive MIMO Systems. Journal of The Institution of Engineers (India): Series B, 1-12.
    [2] Ilyas, B. R., Sofiane, B. M., Ali Abderrazak, T., & Miloud, K. (2024). Enhancing 5G massive MIMO systems with EfficientNet‐B7‐powered deep learning‐driven beamforming. Transactions on Emerging Telecommunications Technologies, 35(9), e5034.
    [3] Paranthaman, R. N., Sonker, A., Varalakshmi, S., Madiajagan, M., Daya Sagar, K. V., & Malathi, M. (2024). Reinforcement learning-based model for the prevention of beam-forming vector attacks on massive MIMO system. Optical and Quantum Electronics, 56(1), 44.
    [4] Srinivas, C. V., & Borugadda, S. A deep learning‐based channel estimation and joint adaptive hybrid beamforming approach for mm‐wave massive MIMO with group‐of‐subarrays. International Journal of Communication Systems, e5994.
    [5] Wang, Y., Gao, Z., Chen, S., Hu, C., & Zheng, D. (2024). Deep Learning–Based Channel Extrapolation and Multiuser beamforming for RIS-aided Terahertz Massive MIMO Systems over Hybrid-Field Channels. Intelligent Computing, 3, 0065.
    [6] Hojatian, H., Mlika, Z., Nadal, J., Frigon, J. F., & Leduc-Primeau, F. (2024). Learning Energy-Efficient Transmitter Configurations for Massive MIMO Beamforming. IEEE Transactions on Machine Learning in Communications and Networking.
    [7] Liu, J., & Zhang, H. (2024). Multi-Branch Unsupervised Learning-Based Beamforming in mm-Wave Massive MIMO Systems With Inaccurate Information. IEEE Transactions on Green Communications and Networking.
    [8] Tarafder, P., & Choi, W. (2023). Deep reinforcement learning-based coordinated beamforming for mmWave massive MIMO vehicular networks. Sensors, 23(5), 2772.
    [9] Bendjillali, R. I., Bendelhoum, M. S., Tadjeddine, A. A., & Kamline, M. (2023). Deep learning-powered beamforming for 5G massive MIMO Systems. Journal of Telecommunications and Information Technology, (4), 38-45.
    [10] Zhang, J., Zheng, G., Zhang, Y., Krikidis, I., & Wong, K. K. (2023). Deep learning based predictive beamforming design. IEEE Transactions on Vehicular Technology, 72(6), 8122-8127.
    [11] H. Ye, G. Y. Li, and B. H. Juang, "Deep reinforcement learning-based resource allocation for cellular networks," IEEE Transactions in Wireless Communications, vol. 19, no. 1, pp. 6-17, Jan. 2020. doi: 10.1109/TWC.2019.2943809.
    [12] H. Huang, Y. Song, J. Peng, and X. Yang, "Deep learning-based CSI feedback approach for time-varying massive MIMO channels," IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 743-747, Oct. 2020. doi: 10.1109/LWC.2020.2975513.
    [13] D. Xu, H. Chen, H. He, and Y. Zhang, "Deep reinforcement learning for dynamic beamforming in massive MIMO systems," IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1740-1744, Oct. 2020. doi: 10.1109/LWC.2020.3005505.
    [14] Qi, C., Wang, Y., & Li, G. Y. (2020). Deep learning for beam training in millimeter wave massive MIMO systems. IEEE Transactions on Wireless Communications.
    [15] Ahmed, I., Shahid, M. K., Khammari, H., & Masud, M. (2021). Machine learning based beam selection with low complexity hybrid beamforming design for 5G massive MIMO systems. IEEE Transactions on Green Communications and Networking, 5(4), 2160-2173.
    [16] Sohal, R. S., Grewal, V., Kaur, J., & Singh, M. L. (2022). Deep learning based analog beamforming design for millimetre wave massive MIMO system. Wireless Personal Communications, 126(1), 701-717.
    [17] Taha, A., Alrabeiah, M., & Alkhateeb, A. (2019, December). Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems. In 2019 IEEE Global communications conference (GLOBECOM) (pp. 1-6). IEEE.
    [18] Upadhyay, S., Juluru, T. K., Deshmukh, P. V., Pawar, A. P., Mane, S. C., Singh, C., & Shrivastava, A. (2024). Machine learning-Based Beamforming Algorithm for Massive MIMO Systems in 5G Networks. Journal of Electrical Systems, 20(3s), 971-979.
    [19] Ahmed, I., Shahid, M. K., Khammari, H., & Masud, M. (2021). Machine learning based beam selection with low complexity hybrid beamforming design for 5G massive MIMO systems. IEEE Transactions on Green Communications and Networking, 5(4), 2160-2173.
    [20] Liu, C., & Helgert, H. J. (2020). An improved adaptive beamforming-based machine learning method for positioning in massive mimo systems. Int. J. Adv. Internet Technol, 6, 1-12.
    [21] Lavdas, S., Gkonis, P. K., Zinonos, Z., Trakadas, P., Sarakis, L., & Papadopoulos, K. (2022). A machine learning adaptive beamforming framework for 5G millimeter wave massive MIMO multicellular networks. IEEE Access, 10, 91597-91609.
    [22] Guo, J., Wen, C. K., & Jin, S. (2020). Deep learning-based CSI feedback for beamforming in single-and multi-cell massive MIMO systems. IEEE Journal on Selected Areas in Communications, 39(7), 1872-1884.
    [23] Huang, S., Ye, Y., & Xiao, M. (2020). Hybrid beamforming for millimeter wave multi-user MIMO systems using learning machine. IEEE Wireless Communications Letters, 9(11), 1914-1918.
    [24] Al Kassir, H., Zaharis, Z. D., Lazaridis, P. I., Kantartzis, N. V., Yioultsis, T. V., & Xenos, T. D. (2022). A review of the state of the art and future challenges of deep learning-based beamforming. IEEE Access, 10, 80869-80882.
    [25] E. Björnson, J. Hoydis, and M. Debbah, "Massive MIMO networks: Spectral, energy, and hardware efficiency," Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154-655, 2017. doi: 10.1561/2000000093.
    [26] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, 2013. doi: 10.1109/MSP.2011.2178495.
    [27] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, "An overview of massive MIMO: Benefits and challenges," IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742-758, Oct. 2014. doi: 10.1109/JSTSP.2014.2317671.
    [28] Q. Mao, F. Hu, and Q. Hao, "Deep learning for intelligent wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2595-2621, 2018. doi: 10.1109/COMST.2018.2846401.
    [29] J. Zhang, L. Dai, and Z. Wang, "Machine learning and deep learning frameworks for massive MIMO systems: A comprehensive survey," IEEE Access, vol. 7, pp. 22926-22941, 2019. doi: 10.1109/ACCESS.2019.2896977.
    [30] L. Huang, Y. Xu, and Y. Wang, "Deep learning for massive MIMO CSI feedback," IEEE Wireless Communications Letters, vol. 8, no. 5, pp. 1357-1360, Oct. 2019. doi: 10.1109/LWC.2019.2922409.
    [31] H. Ye, G. Y. Li, and B. H. Juang, "Deep reinforcement learning-based resource allocation for cellular networks," IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 6-17, Jan. 2020. doi: 10.1109/TWC.2019.2943809.
    [32] H. Huang, Y. Song, J. Peng, and X. Yang, "Deep learning-based CSI feedback approach for time-varying massive MIMO channels," IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 743-747, Oct. 2020. doi: 10.1109/LWC.2020.2975513.
    [33] Z. Yang, W. Liu, Y. Wang, and H. Li, "Deep learning-based channel estimation for massive MIMO with mixed-resolution ADCs," IEEE Access, vol. 7, pp. 89035-89045, 2019. doi: 10.1109/ACCESS.2019.2926610.
    [34] H. Sun, L. Yin, Y. Song, and H. Zou, "Reinforcement learning-based dynamic beamforming for massive MIMO systems," IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp. 8032-8042, Dec. 2018. doi: 10.1109/TWC.2018.2875856.
    [35] [11] D. Xu, H. Chen, H. He, and Y. Zhang, "Deep reinforcement learning for dynamic beamforming in massive MIMO systems," IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1740-1744, Oct. 2020. doi: 10.1109/LWC.2020.3005505.
    [36] Huang, H., Song, Y., Yang, J., Gui, G., & Adachi, F. (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027-3032.
    [37] Qi, C., Wang, Y., & Li, G. Y. (2020). Deep learning for beam training in millimeter wave massive MIMO systems. IEEE Transactions on Wireless Communications.
    [38] Ahmed, I., Shahid, M. K., Khammari, H., & Masud, M. (2021). Machine learning based beam selection with low complexity hybrid beamforming design for 5G massive MIMO systems. IEEE Transactions on Green Communications and Networking, 5(4), 2160-2173.

Suhas Kakde, and Dr. Sanjay Pokle(2025),Optimizing Beamforming in Massive MIMO Systems Using Machine Learning Approaches: A Comprehensive Review. IJEER 13(3), 515-523. DOI: 10.37391/IJEER.130316.