FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

SAM-CLIP Search: Faster Region-Based Image Similarity Matching Using Lightweight Segmentation & Contrastive Learning

Author(s): Dr. Umar M Mulani1, Dr. Mahavir A. Devmane2, Dr. Satpalsing Devising Rajput3, Pramod A. Kharade4, Sagar Baburao Patil5, Dr. Amol Rajmane6, Yogesh Kadam7, Dr. Anindita A Khade8, Yogesh Bodhe9, and Kuldeep Vayadande10*

Publisher : FOREX Publication

Published : 30 November 2025

e-ISSN : 2347-470X

Page(s) : 638-649




Dr. Umar M Mulani, MIT Art, Design and Technology University, Pune, India; Email: umar.mulani@gmail.com

Dr. Mahavir A. Devmane, VPPCOE & VA, Mumbai, India; Email: dmahavir@gmail.com

Dr. Satpalsing Devising Rajput, Pimpri Chinchwad University, Pune, India; Email: rajputsatpal@gmail.com

Pramod A. Kharade, Bharati Vidyapeeth College of Engineering, Kolhapur, India; Email: pramod.kharade@bharatividyapeeth.edu

Sagar Baburao Patil, Bharati Vidyapeeth College of Engineering, Kolhapur, India; Email: someone.sagar@gmail.com

Dr. Amol Rajmane, JSPM University, Pune, India; Email: amolbrajmane@gmail.com

Yogesh Kadam, Bharati Vidyapeeth's College of Engineering Lavale Pune, India; Email: yogesh.kadam@bharatividyapeeth.edu

Dr. Anindita A Khade, SVKM'S NMIMS Deemed to be University, Navi Mumbai Maharashtra, India; Email: aninditaac1987@gmail.com

Yogesh Bodhe, Government Polytechnic, Pune, India; Email: bodheyog@gmail.com

Kuldeep Vayadande, Vishwakarma Institute of Technology, Pune, India; Email: kuldeep.vayadande@gmail.com

    [1] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
    [2] Lytvyn, V., Peleshchak, R., Rishnyak, I., Kopach, B., & Gal, Y. (2024). Detection of Similarity Between Images Based on Contrastive Language-Image Pre-Training Neural Network. In COLINS (1) (pp. 94-104). Maji, S., & Bose, S. (2021). CBIR using features derived by deep learning. ACM/IMS Transactions on Data Science (TDS), 2(3), 1-24.
    [3] Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7), 3523-3542.
    [4] Schiavo, A., Minutella, F., Daole, M., & Gomez, M. G. (2021). Sketches image analysis: Web image search engine usinglsh index and DNN inceptionv3. arXiv preprint arXiv:2105.01147.
    [5] Su, P. T., Lin, C. C., Chen, C. H., & Lee, J. C. (2022, October). Automatic Lung Cancer Segmantation based on Deep Learning. In 2022 IET International Conference on Engineering Technologies and Applications (IET-ICETA) (pp. 1-2). IEEE.
    [6] Üzüm, E. (2021, June). Deep learning-based image segmantation and classification for fashion detection on smartphones. In 2021 29th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
    [7] Chen, D., Ye, B., Zhao, Z., Wang, F., Xu, W., & Yin, W. (2022, July). Change detection converter: Using semantic segmantation models to tackle change detection task. In 2022 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.
    [8] Wang, Y., Ha, T., Aldridge, K., Duddu, H., Shirtliffe, S., & Stavness, I. (2023). Weed mapping with convolutional neural networks on high resolution whole-field images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 505-514).
    [9] Zhang, C., Zhao, J., & Feng, Y. (2023, May). Research on semantic segmentation based on improved PSPNet. In 2023 International Conference on Intelligent Perception and Computer Vision (CIPCV) (pp. 1-6). IEEE.
    [10] Sun, Y., & Ochiai, H. (2021). Maximum-likelihood-based performance enhancement of clipped and filtered OFDM systems with clipping noise cancellation. IEEE Wireless Communications Letters, 11(3), 448-452.
    [11] Zhang, X., Kang, H., Cai, Y., & Jia, T. (2023, September). CLIP Model for Images to Textual Prompts Based on Top-k Neighbors. In 2023 3rd International Conference on Electronic Information Engineering and Computer Science (EIECS) (pp. 821-824). IEEE.
    [12] Chatterjee, R., Chakrabarty, S., & Bishwas, P. (2025, February). ClipXpert: Automated Clip Mining from Video Data for High-Demand Content. In 2025 3rd International Conference on Intelligent Systems, Advanced Computing and Communication (ISACC) (pp. 13-18). IEEE.
    [13] Han, Y., & Li, Q. (2024, April). DFLM: A Dynamic Facial-Language Model Based on CLIP. In 2024 9th International Conference on Intelligent Computing and Signal Processing (ICSP) (pp. 1132-1137). IEEE.
    [14] Adil, M., Akhtar, N., Khan, S. S., & Shoaib, H. (2025, March). Enhancing Text-to-Video Retrieval Using Clip Based Deep Learning Approach. In 2025 IEEE 14th International Conference on Communication Systems and Network Technologies (CSNT) (pp. 159-163). IEEE.
    [15] https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset
    [16] https://www.kaggle.com/datasets/adityajn105/flickr30k
    [17] https://www.kaggle.com/datasets/mayukh18/fashion200k-dataset

Dr. Umar M Mulani, Dr. Mahavir A. Devmane, Dr. Satpalsing Devising Rajput, Pramod A. Kharade, Sagar Baburao Patil, Yogesh Bodhe, Yogesh Kadam, Dr. Anindita A Khade, and Kuldeep Vayadande (2025), SAM-CLIP Search: Faster Region-Based Image Similarity Matching Using Lightweight Segmentation & Contrastive Learning. IJEER 13(4), 638-649. DOI: 10.37391/IJEER.130402.