Research Article | ![]()
Improving Frequency Response in a Microgrid Integrated with PV-HESS Using an FOPI Controller Optimized by the Grey Wolf Optimizer Algorithm
Author(s): Thuy Duong Trinh1, Van Hoan Hoang2, Van Hung Nguyen3*, The Thang Mai4, and Trong Chuong Trinh5
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 4
Publisher : FOREX Publication
Published : 30 December 2025
e-ISSN : 2347-470X
Page(s) : 900-908
Abstract
The application of modern controllers for frequency regulation in standalone microgrids has been increasingly proven feasible. Among these, the Fractional Order Proportional-Integral (FOPI) controller with adjustable parameters has attracted considerable attention. The effectiveness of the FOPI controller is highly dependent on the proper tuning of its parameters. This paper proposes the use of the Grey Wolf Optimizer (GWO) algorithm to determine the optimal tuning parameters, with the objective of minimizing frequency oscillations. The simulation and performance evaluation are conducted using the MATLAB/Simulink platform. Additionally, comparisons are made with classical approaches including FOPI optimized by Particle Swarm Optimization (PSO), Genetic Algorithm (GA), standard FOPI, and conventional PI controllers, in order to assess the effectiveness of the proposed method.
Keywords: Frequency control, Microgrid (MG), PV, HESS, Fractional order PI (FOPI), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO).
Thuy Duong Trinh, Hanoi University of Industry, Hanoi, Vietnam; Email: trinhduonglhp@gmail.com
Van Hoan Hoang, Hanoi University of Industry, Hanoi, Vietnam; Email: vanhoan2423@gmail.com
Van Hung Nguyen*, Hanoi University of Industry, Hanoi, Vietnam; Email: hung_nv@haui.edu.vn
The Thang Mai, Hanoi University of Industry, Hanoi, Vietnam; Email: chuongtt@haui.edu.vn
Trong Chuong Trinh, Hanoi University of Industry, Hanoi, Vietnam; Email: maithang@haui.edu.vn
-
[1] International Energy Agency, “Renewables 2020,” Paris. 2020. doi: 10.1002/peng.20026.
-
[2] I. T. Force et al., “Trends in Microgrid Control,” vol. 5, no. 4. pp. 1905–1919, 2014.
-
[3] P. Patel, “Modeling , Stability Analysis and Control of Renewable Driven Islanded and Grid Connected Microgrids,” no. June. 2011.
-
[4] M. I. Juma, B. M. M. Mwinyiwiwa, C. J. Msigwa, and A. T. Mushi, “Design of a hybrid energy system with energy storage for standalone DC microgrid application,” Energies, vol. 14, no. 18. MDPI, Sep. 2021. doi: 10.3390/en14185994.
-
[5] N. Vazquez, S. S. Yu, T. K. Chau, T. Fernando, and H. H. C. Iu, “A Fully Decentralized Adaptive Droop Optimization Strategy for Power Loss Minimization in Microgrids with PV-BESS,” IEEE Transactions on Energy Conversion, vol. 34, no. 1. pp. 385–395, 2019. doi: 10.1109/TEC.2018.2878246.
-
[6] A. Almousawi and A. Aldair, “Control Strategy for a PV-BESS-SC Hybrid System in Islanded Microgrid,” Iraqi Journal for Electrical and Electronic Engineering, vol. 19, no. 1. College of Engineering, University of Basrah, pp. 1–11, Jun. 2023. doi: 10.37917/ijeee.19.1.1.
-
[7] S. Kotra and M. K. Mishra, “A Supervisory Power Management System for a Hybrid Microgrid With HESS,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5. pp. 3640–3649, May 2017. doi: 10.1109/TIE.2017.2652345.
-
[8] M. U. Mutarraf, Y. Terriche, K. A. K. Niazi, F. Khan, J. C. Vasquez, and J. M. Guerrero, “Control of hybrid diesel/PV/battery/ultra-capacitor systems for future shipboard microgrids,” Energies, vol. 12, no. 18. MDPI AG, Sep. 2019.
-
[9] S. Wen, S. Wang, G. Liu, and R. Liu, “Energy Management and Coordinated Control Strategy of PV/HESS AC Microgrid During Islanded Operation,” IEEE Access, vol. 7. pp. 4432–4441, 2019.
-
[10] S. H. Sikder, M. M. Rahman, S. K. Sarkar, and S. K. Das, “Fractional order robust PID controller design for voltage control of islanded microgrid,” 4th International Conference on Electrical Engineering and Information and Communication Technology, iCEEiCT 2018, no. August. pp. 234–239, 2018. doi: 10.1109/CEEICT.2018.8628040.
-
[11] D. Pullaguram, S. Mishra, N. Senroy, and M. Mukherjee, “Design and Tuning of Robust Fractional Order Controller for Autonomous Microgrid VSC System,” IEEE Transactions on Industry Applications, vol. 54, no. 1. pp. 91–101, Jan. 2018. doi: 10.1109/TIA.2017.2758755.
-
[12] M. F. Mahmoud, A. T. Mohamed, R. A. Swief, L. A. Said, and A. G. Radwan, “Arithmetic optimization approach for parameters identification of different PV diode models with FOPI-MPPT,” Ain Shams Engineering Journal, vol. 13, no. 3. Faculty of Engineering, Ain Shams University, p. 101612, 2022. doi: 10.1016/j.asej.2021.10.007.
-
[13] H. S. Ramadan, “Optimal fractional order PI control applicability for enhanced dynamic behavior of on-grid solar PV systems,” International Journal of Hydrogen Energy, vol. 42, no. 7. Elsevier Ltd, pp. 4017–4031, 2017. doi: 10.1016/j.ijhydene.2017.01.122.
-
[14] M. M. Mahmoud et al., “Application of Whale Optimization Algorithm Based FOPI Controllers for STATCOM and UPQC to Mitigate Harmonics and Voltage Instability in Modern Distribution Power Grids,” Axioms, vol. 12, no. 5. 2023. doi: 10.3390/axioms12050420.
-
[15] H. A. Abumeteir and A. M. Vural, “Design and Optimization of Fractional Order PID Controller to Enhance Energy Storage System Contribution for Damping Low-Frequency Oscillation in Power Systems Integrated with High Penetration of Renewable Sources,” Sustainability (Switzerland), vol. 14, no. 9. 2022. doi: 10.3390/su14095095.
-
[16] M. A. Hasan, A. A. Oglah, and M. J. Marie, “Optimal FOPI-FOPD controller design for rotary inverted pendulum system using grey wolves’ optimization technique,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 3. pp. 657–666, 2023. doi: 10.12928/TELKOMNIKA.v21i3.24383.
-
[17] D. Murugesan, K. Jagatheesan, P. Shah, and R. Sekhar, “Fractional order PIλDμ controller for microgrid power system using cohort intelligence optimization,” Results in Control and Optimization, vol. 11, no. October 2022. Elsevier B.V., p. 100218, 2023. doi: 10.1016/j.rico.2023.100218.
-
[18] M. F. Cells, “Optimization / Genetic Algorithm ( PSO / GA ) in a DC / DC Converter for Improving the Performance of Proton-Exchange.” 2024.
-
[19] R. Rajesh, “Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system,” SN Applied Sciences, vol. 1, no. 7. Springer International Publishing, pp. 1–14, 2019. doi: 10.1007/s42452-019-0754-3.
-
[20] T. B. Seane, R. Samikannu, and T. Bader, “A review of modeling and simulation tools for microgrids based on solar photovoltaics,” Frontiers in Energy Research, vol. 10, no. September. pp. 1–20, 2022. doi: 10.3389/fenrg.2022.772561.
-
[21] O. Abdelkhalek et al., “Modeling and Control a DC-Microgrid Based on PV and HESS Hybrid Energy Storage System,” no. April. 2019. [Online]. Available: https://www.researchgate.net/publication/333774379
-
[22] S. K. Ramu, I. Vairavasundaram, B. Aljafari, and T. Kareri, “Design of PV, Battery, and Supercapacitor-Based Bidirectional DC-DC Converter Using Fuzzy Logic Controller for HESS in DC Microgrid,” Journal of Electrical and Computer Engineering, vol. 2024. 2024. doi: 10.1155/2024/3035524.
-
[23] J. Zeng, B. Zhang, C. Mao, and Y. Wang, “Use of battery energy storage system to improve the power quality and stability of wind farms,” 2006 International Conference on Power System Technology, POWERCON2006. pp. 1–6, 2006. doi: 10.1109/ICPST.2006.321662.
-
[24] Y. Li and L. Fan, “Stability Analysis of Two Parallel Converters with Voltage-Current Droop Control,” IEEE Transactions on Power Delivery, vol. 32, no. 6. pp. 2389–2397, 2017. doi: 10.1109/TPWRD.2017.2656062.
-
[25] D. B. Rathnayake et al., “Grid Forming Inverter Modeling, Control, and Applications,” IEEE Access, vol. 9. IEEE, pp. 114781–114807, 2021. doi: 10.1109/ACCESS.2021.3104617.
-
[26] A. Yazdani and R. Iravani, “A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions,” IEEE Trans. Power Deliv., vol. 21, no. 3, pp. 1620–1629, 2006.
-
[27] J. Belikov and Y. Levron, “A Sparse Minimal-Order Dynamic Model of Power Networks Based on dq0 Signals,” vol. 8950, no. c. pp. 1–9, 2017. doi: 10.1109/TPWRS.2017.2702746.
-
[28] R. Yazdani, A., & Iravani, “Voltage-sourced converters in power systems: Modeling, control, and applications,” pp. 211–217, 2010.
-
[29] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69. Elsevier Ltd, pp. 46–61, 2014. doi: 10.1016/j.advengsoft.2013.12.007.
-
[30] J. Agarwal, G. Parmar, R. Gupta, and A. Sikander, “Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor,” Microsystem Technologies, vol. 24, no. 12. pp. 4997–5006, 2018. doi: 10.1007/s00542-018-3920-4.
-
[31] U. B. Tayab, J. Lu, S. Taghizadeh, A. S. M. Metwally, and M. Kashif, “Microgrid energy management system for residential microgrid using an ensemble forecasting strategy and grey wolf optimization,” Energies, vol. 14, no. 24. pp. 1–19, 2021. doi: 10.3390/en14248489.
-
[32] S. K. Verma and R. Devarapalli, “Fractional order PIλDμ controller with optimal parameters using Modified Grey Wolf Optimizer for AVR system,” Archives of Control Sciences, vol. 32, no. 2. pp. 429–450, 2022. doi: 10.24425/acs.2022.141719.
-
[33] J. Zhang, X. Wang, and L. Ma, “An optimal power allocation scheme of microgrid using grey wolf optimizer,” IEEE Access, vol. 7. pp. 137608–137619, 2019. doi: 10.1109/ACCESS.2019.2942352.
-
[34] B. S. Goud et al., “PV/WT Integrated System Using the Gray Wolf Optimization Technique for Power Quality Improvement,” Frontiers in Energy Research, vol. 10, no. August. pp. 1–14, 2022. doi: 10.3389/fenrg.2022.957971.

I. J. of Electrical & Electronics Research