Research Article | ![]()
Compact Folded T-Stub Microstrip Antenna with PIN Diode-Based Switching for Quad-Band Sub-6 GHz Wireless Systems
Author(s): Jinan N. Shehab1*, Israa Hazem Ali2, and Huda I. Hamd3
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 4
Publisher : FOREX Publication
Published : 30 December 2025
e-ISSN : 2347-470X
Page(s) : 960-970
Abstract
The article describes a miniaturized design of a microstrip patch antenna for wireless systems operating at frequencies below 6GHz. It consists of one PIN diode that can dynamically switch between two different operation modes without the need for any mechanical alterations to the radiator. The prototype was built on a Rogers RT/Duroid 5880 substrate (ε_r = 2.2, tan δ = 0.0009). The design has a small footprint of 17 x 17 x 0.55 mm3. In “OFF” mode, "THS-RA" achieves tri-band (3.34 GHz, 5.347 GHz, 6.409 GHz) and satisfies 5G Sub-6GHz, Wi-Fi 5, and Wi-Fi 6E/Industrial Sensing Standards. In "ON" mode (when the diode is activated), "THS-RA" will convert to a single-band operating frequency of 2.44GHz, used for ISM, Bluetooth, and WLAN applications. Both modes yield reflection coefficients below -10dB and stable realized gains from 0.52dBi to 1.96dBi. The Folded T-Stub Reconfigurable Antenna will operate at multiple frequencies without the need for an externally tuned circuit and can be implemented in compact, low-power multi-standard wireless devices (IOT), as well as future communication systems.
Keywords: Quad-band reconfigurable antenna, PIN diode control, Sub-6 GHz wireless systems, Multi-state resonance tuning, Compact patch design, Frequency-switchable operation, 5G, WLAN, Wi-Fi 6E integration.
Jinan N. Shehab*, Department of Communication Engineering, University of Diyala, Diyala, Iraq; Email: jinan_alazawii_eng@uodiyala.edu.iq
Israa Hazem Ali, Department of Communication Engineering, University of Diyala, Diyala, Iraq; Email: Israa_Hassan_Eng@uodiyala.edu.iq
Huda I. Hamd, Department of Electronic Engineering, University of Diyala, Diyala, Iraq; Email: huda.Ibrahim@uodiyala.edu.iq
-
[1] D. N. Gençoğlan, Ş. Çolak, and M. Palandöken, “Spiral-Resonator-Based Frequency Reconfigurable Antenna Design for Sub-6 GHz Applications,” Applied Sciences (Switzerland), vol. 13, no. 15, 2023, doi: 10.3390/app13158719.
-
[2] A. Kumar, M. Aljaidi, I. Kansal, K. Alshammari, G. Gupta, and S. M. Alenezi, “Recent Trends in Reconfigurable Antennas for Modern Wireless Communication: A Comprehensive Review,” Int J Antennas Propag, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/ijap/8816812.
-
[3] A. Tiwari, G. K. Soni, D. Yadav, S. V. Yadav, and M. V. Yadav, “Rectangular loaded ring-shaped multiband frequency reconfigurable defected ground structure antenna for wireless communication applications,” Results in Engineering, vol. 25, p. 104339, Mar. 2025, doi: 10.1016/j.rineng.2025.104339.
-
[4] M. S. Yahya, S. Soeung, S. K. A. Rahim, U. Musa, S. S. Ba Hashwan, and M. A. Haque, “Machine Learning-Optimized Compact Frequency Reconfigurable Antenna with RSSI Enhancement for Long-Range Applications,” IEEE Access, vol. 12, 2024, doi: 10.1109/ACCESS.2024.3355145.
-
[5] T. K. Nguyen, C. D. Bui, A. Narbudowicz, and N. Nguyen-Trong, “Frequency-Reconfigurable Antenna with Wide- and Narrow-band Modes for sub-6 GHz Cognitive Radio,” IEEE Antennas Wirel Propag Lett, 2022, doi: 10.1109/LAWP.2022.3201969.
-
[6] M. Kaur, H. Shankar Singh, and M. Agarwal, “A compact two-state pattern reconfigurable antenna for 5G Sub-6 GHz cellular applications,” AEU - International Journal of Electronics and Communications, vol. 162, 2023, doi: 10.1016/j.aeue.2023.154577.
-
[7] S. Shrimal, R. Agrawal, I. B. Sharma, and M. M. Sharma, “Dual wideband circularly polarized reconfigurable antenna using gap loaded annular ring,” AEU - International Journal of Electronics and Communications, vol. 178, p. 155296, May 2024, doi: 10.1016/j.aeue.2024.155296.
-
[8] T. K. Nguyen, C. D. Bui, A. Narbudowicz, and N. Nguyen-Trong, “Frequency-Reconfigurable Antenna with Wide- and Narrowband Modes for Sub-6 GHz Cognitive Radio,” IEEE Antennas Wirel Propag Lett, vol. 22, no. 1, pp. 64–68, Jan. 2022, doi: 10.1109/LAWP.2022.3201969.
-
[9] K. Thenkumari, K. S. Sankaran, and J. M. Mathana, “Design and Implementation of Frequency Reconfigurable Antenna for Wi-Fi Applications,” Engineered Science, vol. 23, 2023, doi: 10.30919/es8d876.
-
[10] O. Benkhadda et al., “A Miniaturized Reconfigurable Antenna for Modern Wireless Applications with Broadband and Multi-band Capabilities,” Progress in Electromagnetics Research M, vol. 127, pp. 93–101, 2024, doi: 10.2528/PIERM24042801.
-
[11] A. Tiwari, G. K. Soni, D. Yadav, S. V. Yadav, and M. V. Yadav, “Rectangular loaded ring-shaped multiband frequency reconfigurable defected ground structure antenna for wireless communication applications,” Results in Engineering, vol. 25, p. 104339, Mar. 2025, doi: 10.1016/j.rineng.2025.104339.
-
[12] A. Reha, O. Benkhadda, A. Oulad Said, A. El Amri, and A. Jamal Abdullah Al-Gburi, “Design of Sub-6GHz and Sub-7GHz DRAGON Fractal Antenna for 5G Applications with Enhanced Bandwidth,” International Journal of Intelligent Engineering and Systems, vol. 18, no. 2, pp. 14–22, Mar. 2025, doi: 10.22266/ijies2025.0331.02.
-
[13] D. M. Pozar, Microwave Engineering, 4th Edition. 2012.
-
[14] C. A. Balanis, Antenna Theory: Analysis and Design, Wiley., vol. 4. 2016.
-
[15] N. Ahmed Malik, “Design of Implantable Antennas for Biomedical Applications,” PhD, University of Bedfordshire., 2022.
-
[16] Boyapati Bharathidevi and Jayendra Kumar, “Effect of PIN Diode Integration on Patch Antennas for Frequency Reconfigurable Antenna Applications,” Advances in Technology Innovation, vol. 8, no. 3, pp. 210–218, Jul. 2023, doi: 10.46604/aiti.2023.9235.
-
[17] M. Joler and J. Kucan, “Impact of Slot Parameters on the Three Resonant Frequencies of a Rectangular Microstrip Antenna: Study of the impact of the slot length, width, and position,” IEEE Antennas Propag Mag, vol. 57, no. 4, pp. 48–63, Aug. 2015, doi: 10.1109/MAP.2015.2453888.
-
[18] J. N. Shehab, M. J. Farhan, and S. Al-Azawi, “A non-invasive wearable microwave sensor for Alzheimer’s Stage differentiation using realistic 3D human head phantoms,” Results in Engineering, vol. 27, p. 106350, Sep. 2025, doi: 10.1016/j.rineng.2025.106350.
-
[19] J. N., F. M. J. A.-A. S. Shehab, “Microwave Sensing System and Six-layer Phantom Model for Detection of Benign and Malignant Brain Tumors in Experimental and Simulated Environments,” International Journal of Intelligent Engineering and Systems, vol. 18, no. 4, pp. 571–584, May 2025, doi: 10.22266/ijies2025.0531.37.
-
[20] W. Xu, K. Wu, and P. Li, “Monte Carlo Tolerance Analysis of Antennas /Radomes with Mesh/Element Strip Grouping,” in 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), IEEE, Dec. 2021, pp. 1253–1254. doi: 10.1109/APS/URSI47566.2021.9703733.
-
[21] S. Babu and G. Kumar, “Reliability Studies of Microstrip Antennas using Monte Carlo Simulation,” IETE Technical Review, vol. 18, no. 1, pp. 51–56, Jan. 2001, doi: 10.1080/02564602.2001.11416943.
-
[22] P. Kumar, S. Dwari, R. K. Saini, and M. K. Mandal, “Dual-Band Dual-Sense Polarization Reconfigurable Circularly Polarized Antenna,” IEEE Antennas Wirel Propag Lett, vol. 18, no. 1, pp. 64–68, Jan. 2019, doi: 10.1109/LAWP.2018.2880799.
-
[23] H. Dildar et al., “Design and Experimental Analysis of Multiband Frequency Reconfigurable Antenna for 5G and Sub-6 GHz Wireless Communication,” Micromachines (Basel), vol. 12, no. 1, p. 32, Dec. 2020, doi: 10.3390/mi12010032.
-
[24] A. H. Ali et al., “A compact dual-band reconfigurable antenna with metamaterial for IoT applications,” Sci Rep, vol. 15, no. 1, p. 21039, Jul. 2025, doi: 10.1038/s41598-025-05174-y.

I. J. of Electrical & Electronics Research