FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

A Novel Medical Image Segmentation Model with Domain Generalization Approach

Author(s) : R Gomathi1 and S Selvakumaran2

Publisher : FOREX Publication

Published : 30 June 2022

e-ISSN : 2347-470X

Page(s) : 312-319




R Gomathi, Department of ECE, University College of Engineering Dindigul, Tamilnadu, India; Email: gomathiaudece@gmail.com

S Selvakumaran, Department of EEE, PSNA CET, Dindigul, Tamilnadu, India; Email: selvakumaran1977@gmail.com

[1] Bora, “Medical color image enhancement: Problems, challenges & recent techniques,” in Intelligent Multimedia Data Analysis. De Gruyter, 2019, pp. 1–18. [Cross Ref]

[Cross Ref] [2] Parul Datta, Prasenjit Das and Abhishek Kumar (2021), An Integrated Fundus Image Segmentation Algorithm for Multiple Eye Ailments. IJEER 9(4), 125-134. DOI: 10.37391/IJEER.090406.[Cross Ref]

[3] Castrejón, K. Kundu, R. Urtasun, S. Fidler, Annotating object instances with a polygon-RNN, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 4485–4493, doi:10.1109/CVPR.2017.477.[Cross Ref]

[4] Avadhesh Kumar Dixit, Rakesh Kumar Yadav and Ramapati Mishra (2021), Contrast Enhancement of Colour Images by Optimized Fuzzy Intensification. IJEER 9(4), 143-149. DOI: 10.37391/IJEER.090408.[Cross Ref]

[5] Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, AvXiv Preprint AvXiv: 1706.05587. (2017).[Cross Ref]

[6] Fan, Q. Wang, J. Ke, F. Yang, B. Gong, and M. Zhou, “Adversarially adaptive normalization for single domain generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8208–8217.[Cross Ref]

[7] Li, K. Gao, J. Cao, Z. Huang, Y. Weng, X. Mi, Z. Yu, X. Li, and B. Xia, “Progressive domain expansion network for single domain generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 224–233.[Cross Ref]

[8] Lin, A. Milan, C. Shen, I. Reid, RefineNet: multi-path refinement networks for high-resolution semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 42 (2020) 1228–1242, doi:10.1109/TPAMI.2019.2893630.[Cross Ref]

[9] Liu, R. Yang, S. Li, Y. Shi, X. Jin, Painting completion with generative translation models, Multimed. Tools Appl. 79 (2020) 14375–14388, doi:10.1007/ s11042-018-6761-3.[Cross Ref]

[10] Liu, Y. Chen, X. Zhu, K. Hou, Image classification using label constrained sparse coding, Multimed. Tools Appl. 75 (2016) 15619–15633, doi:10.1007/s11042-015-2626-1.[Cross Ref]

[11] Qiao, L. Zhao, and X. Peng, “Learning to learn single domain generalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 556–12 565.[Cross Ref]

[12] Tajbakhsh, L. Jeyaseelan, Q. Li, J.N. Chiang, Z. Wu, X. Ding, Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation, Med. Image Anal. 63 (2020) 101693, doi:10.1016/j.media.2020.101693.[Cross Ref]

[13] Visin, A. Romero, M. Ciccone, K. Kastner, K. Cho, M. Matteucci, Y. Bengio, A. Courville, ReSeg: a recurrent neural network-based model for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, 2016, pp. 426–433, doi:10.1109/CVPRW.2016.60.[Cross Ref]

[14] Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, G. Cottrell, Understanding convolution for semantic segmentation, in: Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, WACV, Institute of Electrical and Electronics Engineers Inc, 2018, pp. 1451–1460, doi:10.1109/WACV.2018.00163. 2018.[Cross Ref]

[15] Wang, Y. Luo, R. Qiu, Z. Huang, and M. Baktashmotlagh, “Learning to diversify for single domain generalization,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 834–843.[Cross Ref]

[16] Wei, W. Wang, W. Yang, and J. Liu, “Deep retinex decomposition for low-light enhancement,” arXiv preprint arXiv:1808.04560, 2018.[Cross Ref]

[17] Xu, Q. Zhu, J. Wang, Generative image completion with image-toimage translation, Neural Comput. Appl. 32 (2020) 7333–7345, doi:10.1007/ s00521-019-04253-2.[Cross Ref]

[18] Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, in: Proceedings of the International Conference on Learning Representations, Caribe Hilton, 2016, pp. 1–4. International Conference on Learning Representations, ICLR.[Cross Ref]

[19] Yu, H. Dong, M. Zhang, J. Zhao, B. Dong, Q. Li, L. Zhang, AF-SEG: an annotation-free approach for image segmentation by self-supervision and generative adversarial network, in: Proceedings of the International Symposium on Biomedical Imaging, IEEE Computer Society, 2020, pp. 1503–1507, doi:10.1109/ISBI45749.2020.9098535.[Cross Ref]

[20] Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing Network, in: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 6230–6239, doi:10.1109/CVPR.2017.660. 2017. [Cross Ref]

R Gomathi, S Selvankumaran (2022), A Novel Medical Image Segmentation Model with Domain Generalization Approach. IJEER 10(2), 312-319. DOI: 10.37391/IJEER.100242.