FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Speaker Identification Analysis Based on Long-Term Acoustic Characteristics with Minimal Performance

Author(s): Mahesh K. Singh1, S. Manusha2, K.V. Balaramakrishna3 and Sridevi Gamini4

Publisher : FOREX Publication

Published : 18 October 2022

e-ISSN : 2347-470X

Page(s) : 848-852




Mahesh K. Singh*, Department of ECE, Aditya Engineering College, Surampalem, India; Email: mahesh.singh@accendere.co.in

S. Manusha, Assistant Professor, Department of ECE, Aditya Engineering College, Surampalem, India; Email: sunkavallimanusha9977@gmail.com

K.V. Balaramakrishna, Department of ECE, Aditya Engineering College, Surampalem, India; Email: balaramakrishna_ece@acoe.edu.in

Sridevi Gamini, Assistant Professor, Department of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India; Email: sridevi_gamini@yahoo.com

    [1] Lin, T., & Zhang, Y. (2019). Speaker recognition is based on long-term acoustic features with an analysis of sparse representation. IEEE Access, 7, 87439-87447.[Cross Ref]
    [2] Naseem, I., Togneri, R., & Bennamoun, M. (2010, August). Sparse representation for speaker identification. In 2010 20th International Conference on Pattern Recognition (pp. 4460-4463). IEEE.[Cross Ref]
    [3] Xu, L., & Yang, Z. (2013, August). Speaker identification based on sparse subspace model. In 2013 19th Asia-Pacific Conference on Communications (APCC) (pp. 37-41). IEEE.[Cross Ref]
    [4] Chin, Y. H., Wang, J. C., Huang, C. L., Wang, K. Y., & Wu, C. H. (2017). Speaker identification using discriminative features and sparse representation. IEEE Transactions on Information Forensics and Security, 12(8), 1979-1987.[Cross Ref]
    [5] Singh, M., Nandan, D., & Kumar, S. (2019). Statistical Analysis of Lower and Raised Pitch Voice Signal and Its Efficiency Calculation. Traitement du Signal, 36(5), 455-461.[Cross Ref]
    [6] Priya, B., & Dandapat, S. (2016, November). Sparse representation of LPC for analysis of stressed speech in lower-dimensional subspace. In 2016 IEEE Region 10 Conference (TENCON) (pp. 661-666). IEEE.[Cross Ref]
    [7] Singh, M. K., Singh, A. K., & Singh, N. (2019). Multimedia analysis for disguised voice and classification efficiency. Multimedia Tools and Applications, 78(20), 29395-29411.[Cross Ref]
    [8] Singh, O. P., & Sinha, R. (2017, November). Sparse representation classification over discriminatively learned dictionary for language recognition. In TENCON 2017-2017 IEEE Region 10 Conference (pp. 2632-2636). IEEE.[Cross Ref]
    [9] Singh, M. K., Singh, A. K., & Singh, N. (2018). Acoustic comparison of electronics disguised voice using different semitones. Int J Eng Technol (UAE), 7(2), 98.[Cross Ref]
    [10] Zou, Y., Guo, Y., Zheng, W., Ritz, C. H., & Xi, J. (2014, July). An effective DOA estimation by exploring the spatial sparse representation of the inter-sensor data ratio model. In 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP) (pp. 42-46). IEEE.[Cross Ref]
    [11] Singh, M. K., Singh, A. K., & Singh, N. (2018). Disguised voice with fast and slow speech and its acoustic analysis. Int J Pure Appl Math, 118(14), 241-246.[Cross Ref]
    [12] Zhang, C., Koishida, K., & Hansen, J. H. (2018). Text-independent speaker verification based on triplet convolutional neural network embeddings. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(9), 1633-1644.[Cross Ref]
    [13] Singh, M. K., Singh, A. K., & Singh, N. (2019). Multimedia utilization of non-computerized disguised voice and acoustic similarity measurement. Multimedia Tools and Applications, 1-16.[Cross Ref]
    [14] Frisky, A. Z. K., Wang, C. Y., Santoso, A., & Wang, J. C. (2015, September). Lip-based visual speech recognition system. In 2015 International Carnahan Conference on Security Technology (ICCST) (pp. 315-319). IEEE.[Cross Ref]
    [15] Siddiqa, S. K., Apurva, K., Nandan, D., & Kumar, S. (2021). Documentation on smart home monitoring using the internet of things. In ICCCE 2020 (pp. 1115-1124). Springer, Singapore.[Cross Ref]
    [16] Singh, M. K., Singh, N., & Singh, A. K. (2019, March). Speaker's Voice Characteristics and Similarity Measurement using Euclidean Distances. In 2019 International Conference on Signal Processing and Communication (ICSC) (pp. 317-322). IEEE.[Cross Ref]
    [17] Punyavathi, G., Neeladri, M., & Singh, M. K. (2021). Vehicle tracking and detection techniques using IoT. Materials Today: Proceedings.[Cross Ref]
    [18] Veerendra, G., Swaroop, R., Dattu, D. S., Jyothi, C. A., & Singh, M. K. (2021). Detecting plant Diseases, quantifying and classifying digital image processing techniques. Materials Today: Proceedings.[Cross Ref]
    [19] Priya, B. J., Kunda, P., & Kumar, S. (2021). Design and Implementation of Smart Real-Time Billing, GSM, and GPS-Based Theft Monitoring and Accident Notification Systems. In Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications (pp. 647-661). Springer, Singapore.[Cross Ref]
    [20] Kiran, K. S., Preethi, V., & Kumar, S. (2022). A brief review of organic solar cells and materials involved in its fabrication. Materials Today: Proceedings.[Cross Ref]
    [21] Haris, B. C., & Sinha, R. (2015). Robust speaker verification with joint sparse coding over learned dictionaries. IEEE Transactions on Information Forensics and Security, 10(10), 2143-2157.[Cross Ref]
    [22] Sreeram, G., Haris, B. C., & Sinha, R. (2015, November). Improved speaker verification using block sparse coding over joint speaker-channel learned dictionary. In TENCON 2015-2015 IEEE Region 10 Conference (pp. 1-5). IEEE.[Cross Ref]
    [23] Sudeep, S. V. N. V. S., Venkata Kiran, S., Nandan, D., & Kumar, S. (2021). An Overview of Biometrics and Face Spoofing Detection. ICCCE 2020, 871-881.[Cross Ref]

Mahesh K. Singh, S. Manusha, K.V. Balaramakrishna and Sridevi Gamini (2022), Speaker Identification Analysis Based on Long-Term Acoustic Characteristics with Minimal Performance . IJEER 10(4), 848-852. DOI: 10.37391/IJEER.100415.