FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

An Optimized Transfer Learning Based Framework for Brain Tumor Classification

Author(s): Manish Kumar Arya1 and Rajeev Agrawal2

Publisher : FOREX Publication

Published : 20 December 2022

e-ISSN : 2347-470X

Page(s) : 1184-1190




Manish Kumar Arya*, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India; Email: manisharya07@gmail.com

Rajeev Agrawal, Lloyd Institute of Engineering & Technology, Greater Noida, India; Email: rajkecd@gmail.com

    [1] DeAngelis, L. M. (2001). Brain tumors. New England journal of medicine, 344(2), 114-123. [Cross Ref]
    [2] Stewart, B. W., & Wild, C. P. (2014). World cancer report 2014. IARC. IARC Nonserial Publ: Lyon, France, 630.[Cross Ref]
    [3] E. Aarthi, S. Jana, W. Gracy Theresa, M. Krishnamurthy, A. S. Prakaash, C. Senthilkumar, S. Gopalakrishnan (2022), Detection and Classification of MRI Brain Tumors using S3-DRLSTM Based Deep Learning Model. IJEER 10(3), 597-603. DOI: 10.37391/IJEER.100331.[Cross Ref]
    [4] Goodenberger, M. L., & Jenkins, R. B. (2012). Genetics of adult glioma. Cancer genetics, 205(12), 613-621.[Cross Ref]
    [5] Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging, 35(5), 1240-1251. [Cross Ref]
    [6] Zimny, A., Neska-Matuszewska, M., Bladowska, J., & Sąsiadek, M. J. (2015). Intracranial lesions with low signal intensity on T2-weighted MR images–review of pathologies. Polish journal of radiology, 80, 40. [Cross Ref]
    [7] Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International journal of biomedical imaging, 2017.[Cross Ref]
    [8] Jalab, H. A., & Hasan, A. (2019). ‘Magnetic resonance imaging segmentation techniques of brain tumors: A review. Arch. Neurosci, 6.[Cross Ref]
    [9] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in signal processing, 7(3–4), 197-387.[Cross Ref]
    [10] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88. [Cross Ref]
    [11] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).[Cross Ref]
    [12] Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., & Davatzikos, C. (2009). Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 62(6), 1609-1618. [Cross Ref]
    [13] El-Dahshan, E. S. A., Hosny, T., & Salem, A. B. M. (2010). Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), 433-441. [Cross Ref]
    [14] Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., & Feng, Q. (2015). Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS one, 10(10), e0140381.[Cross Ref]
    [15] Ertosun, M. G., & Rubin, D. L. (2015). Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. In AMIA Annual Symposium Proceedings (Vol. 2015, p. 1899). American Medical Informatics Association. [Cross Ref]
    [16] Paul, J. S., Plassard, A. J., Landman, B. A., & Fabbri, D. (2017). Deep learning for brain tumor classification. In A. Krol & B. Gimi (Eds.), Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging (Vol. 10137, p. 1013710). SPIE. https://doi.org/10.1117/12.2254195[Cross Ref]
    [17] Afshar, P., Plataniotis, K. N., & Mohammadi, A. (2019, May). Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1368-1372). IEEE. [Cross Ref]
    [18] Anaraki, A. K., Ayati, M., & Kazemi, F. (2019). Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernetics and Biomedical Engineering, 39(1), 63-74. [Cross Ref]
    [19] Chen, T., Lin, L., Zuo, W., Luo, X., & Zhang, L. (2018, April). Learning a wavelet-like auto-encoder to accelerate deep neural networks. In Thirty-Second AAAI Conference on Artificial Intelligence.[Cross Ref]
    [20] Shalini, R., Muralidharan, V., & Varatharaj, M. (2014). MRI brain tumor segmentation using kernel weighted fuzzy clustering. Int. J. Eng. Res. Technol., 3(4), 121-125.[Cross Ref]
    [21] Damodharan, S., & Raghavan, D. (2015). Combining tissue segmentation and neural network for brain tumor detection. International Arab Journal of Information Technology (IAJIT), 12(1). [Cross Ref]
    [22] Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., & Tarbox, L. (2013). The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging, 26(6), 1045-1057.[Cross Ref]
    [23] Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016, November). Understanding data augmentation for classification: when to warp?. In 2016 international conference on digital image computing: techniques and applications (DICTA) (pp. 1-6). IEEE.[Cross Ref]
    [24] Sarkar, D. (2018). A Comprehensive Hands-on Guide to Transfer Learning with Real-World Applications in Deep Learning.[Cross Ref]
    [25] V. Sanjay and P. Swarnalatha (2022), A Survey on Various Machine Learning Techniques for an Efficient Brain Tumor Detection from MRI Images. IJEER 10(2), 177-182. DOI: 10.37391/IJEER.100222. [Cross Ref]
    [26] Sultan, H. H., Salem, N. M., & Al-Atabany, W. (2019). Multi-classification of brain tumor images using deep neural network. IEEE Access, 7, 69215-69225.[Cross Ref]
    [27] Harendra singh and Roop Singh Solanki (2021), Classification & Feature extraction of Brain tumor from MRI Images using Modified ANN Approach. IJEER 9(2), 10-15. DOI: 10.37391/IJEER.090202.https://ijeer.forexjournal.co.in/archive/volume-9/ijeer-090202.html [Cross Ref]
    [28] Sharif, M.I., Khan, M.A., Alhussein, M. et al. A decision support system for multimodal brain tumor classification using deep learning. Complex Intell. Syst. 8, 3007–3020 (2022). https://doi.org/10.1007/s40747-021-00321-0[Cross Ref]
    [29] Irmak, E. Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iran J Sci Technol Trans Electr Eng 45, 1015–1036 (2021). https://doi.org/10.1007/s40998-021-00426-9.[Cross Ref]

Manish Kumar Arya and Rajeev Agrawal (2022), An Optimized Transfer Learning Based Framework for Brain Tumor Classification. IJEER 10(4), 1184-1190. DOI: 10.37391/IJEER.100467.