Research Article |
An Optimized Transfer Learning Based Framework for Brain Tumor Classification
Author(s): Manish Kumar Arya1 and Rajeev Agrawal2
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 10, Issue 4
Publisher : FOREX Publication
Published : 20 December 2022
e-ISSN : 2347-470X
Page(s) : 1184-1190
Abstract
Brain Tumor (BT) categorization is an indispensable task for evaluating Tumors and making an appropriate treatment. Magnetic Resonance Imaging (MRI) modality is commonly used for such an errand due to its unparalleled nature of the imaging and the actuality that it doesn't rely upon ionizing radiations. The pertinence of Deep Learning (DL) in the space of imaging has cleared the way for exceptional advancements in identifying and classifying complex medical conditions, similar to a BT. Here in the presented paper, the classification of BT through DL techniques is put forward for the characterizing BTs using open dataset which categorize them into benign and malignant. The proposed framework achieves a striking precision of 96.65%. The proposed framework can be employed to assist physicians and radiologists in validating their initial screening for brain tumor classification.
Keywords: Deep Learning
, Artificial Intelligence
, Image Processing
, Transfer Learning
.
Manish Kumar Arya*, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India; Email: manisharya07@gmail.com
Rajeev Agrawal, Lloyd Institute of Engineering & Technology, Greater Noida, India; Email: rajkecd@gmail.com
-
[1] DeAngelis, L. M. (2001). Brain tumors. New England journal of medicine, 344(2), 114-123. [Cross Ref]
-
[2] Stewart, B. W., & Wild, C. P. (2014). World cancer report 2014. IARC. IARC Nonserial Publ: Lyon, France, 630.[Cross Ref]
-
[3] E. Aarthi, S. Jana, W. Gracy Theresa, M. Krishnamurthy, A. S. Prakaash, C. Senthilkumar, S. Gopalakrishnan (2022), Detection and Classification of MRI Brain Tumors using S3-DRLSTM Based Deep Learning Model. IJEER 10(3), 597-603. DOI: 10.37391/IJEER.100331.[Cross Ref]
-
[4] Goodenberger, M. L., & Jenkins, R. B. (2012). Genetics of adult glioma. Cancer genetics, 205(12), 613-621.[Cross Ref]
-
[5] Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging, 35(5), 1240-1251. [Cross Ref]
-
[6] Zimny, A., Neska-Matuszewska, M., Bladowska, J., & Sąsiadek, M. J. (2015). Intracranial lesions with low signal intensity on T2-weighted MR images–review of pathologies. Polish journal of radiology, 80, 40. [Cross Ref]
-
[7] Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International journal of biomedical imaging, 2017.[Cross Ref]
-
[8] Jalab, H. A., & Hasan, A. (2019). ‘Magnetic resonance imaging segmentation techniques of brain tumors: A review. Arch. Neurosci, 6.[Cross Ref]
-
[9] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in signal processing, 7(3–4), 197-387.[Cross Ref]
-
[10] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88. [Cross Ref]
-
[11] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).[Cross Ref]
-
[12] Zacharaki, E. I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E. R., & Davatzikos, C. (2009). Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 62(6), 1609-1618. [Cross Ref]
-
[13] El-Dahshan, E. S. A., Hosny, T., & Salem, A. B. M. (2010). Hybrid intelligent techniques for MRI brain images classification. Digital Signal Processing, 20(2), 433-441. [Cross Ref]
-
[14] Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., & Feng, Q. (2015). Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS one, 10(10), e0140381.[Cross Ref]
-
[15] Ertosun, M. G., & Rubin, D. L. (2015). Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. In AMIA Annual Symposium Proceedings (Vol. 2015, p. 1899). American Medical Informatics Association. [Cross Ref]
-
[16] Paul, J. S., Plassard, A. J., Landman, B. A., & Fabbri, D. (2017). Deep learning for brain tumor classification. In A. Krol & B. Gimi (Eds.), Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging (Vol. 10137, p. 1013710). SPIE. https://doi.org/10.1117/12.2254195[Cross Ref]
-
[17] Afshar, P., Plataniotis, K. N., & Mohammadi, A. (2019, May). Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1368-1372). IEEE. [Cross Ref]
-
[18] Anaraki, A. K., Ayati, M., & Kazemi, F. (2019). Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernetics and Biomedical Engineering, 39(1), 63-74. [Cross Ref]
-
[19] Chen, T., Lin, L., Zuo, W., Luo, X., & Zhang, L. (2018, April). Learning a wavelet-like auto-encoder to accelerate deep neural networks. In Thirty-Second AAAI Conference on Artificial Intelligence.[Cross Ref]
-
[20] Shalini, R., Muralidharan, V., & Varatharaj, M. (2014). MRI brain tumor segmentation using kernel weighted fuzzy clustering. Int. J. Eng. Res. Technol., 3(4), 121-125.[Cross Ref]
-
[21] Damodharan, S., & Raghavan, D. (2015). Combining tissue segmentation and neural network for brain tumor detection. International Arab Journal of Information Technology (IAJIT), 12(1). [Cross Ref]
-
[22] Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., & Tarbox, L. (2013). The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging, 26(6), 1045-1057.[Cross Ref]
-
[23] Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016, November). Understanding data augmentation for classification: when to warp?. In 2016 international conference on digital image computing: techniques and applications (DICTA) (pp. 1-6). IEEE.[Cross Ref]
-
[24] Sarkar, D. (2018). A Comprehensive Hands-on Guide to Transfer Learning with Real-World Applications in Deep Learning.[Cross Ref]
-
[25] V. Sanjay and P. Swarnalatha (2022), A Survey on Various Machine Learning Techniques for an Efficient Brain Tumor Detection from MRI Images. IJEER 10(2), 177-182. DOI: 10.37391/IJEER.100222. [Cross Ref]
-
[26] Sultan, H. H., Salem, N. M., & Al-Atabany, W. (2019). Multi-classification of brain tumor images using deep neural network. IEEE Access, 7, 69215-69225.[Cross Ref]
-
[27] Harendra singh and Roop Singh Solanki (2021), Classification & Feature extraction of Brain tumor from MRI Images using Modified ANN Approach. IJEER 9(2), 10-15. DOI: 10.37391/IJEER.090202.https://ijeer.forexjournal.co.in/archive/volume-9/ijeer-090202.html [Cross Ref]
-
[28] Sharif, M.I., Khan, M.A., Alhussein, M. et al. A decision support system for multimodal brain tumor classification using deep learning. Complex Intell. Syst. 8, 3007–3020 (2022). https://doi.org/10.1007/s40747-021-00321-0[Cross Ref]
-
[29] Irmak, E. Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iran J Sci Technol Trans Electr Eng 45, 1015–1036 (2021). https://doi.org/10.1007/s40998-021-00426-9.[Cross Ref]
Manish Kumar Arya and Rajeev Agrawal (2022), An Optimized Transfer Learning Based Framework for Brain Tumor Classification. IJEER 10(4), 1184-1190. DOI: 10.37391/IJEER.100467.