FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Case Study Article |

Context-Aware Offloading for IoT Application using Fog-Cloud Computing

Author(s): Karan Bajaj 1*, Shaily Jain2 and Raman Singh3

Publisher : FOREX Publication

Published : 20 February 2023

e-ISSN : 2347-470X

Page(s) : 69-83




Karan Bajaj*, Assistant Professor, Department of Computer Science & Engineering, Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India; Email: karan.bajaj@chitkarauniversity.edu.in

Shaily Jain, Professor, Department of Computer Science & Engineering, Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India; Email: shaily.jain@chitkarauniversity.edu.in

Raman Singh, Lecturer, School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Lanarkshire, Scotland; Email: raman.singh@uws.ac.uk

    [1] Sethi, P. and Sarangi, S.R., 2017. Internet of things: architectures, protocols, and applications. Journal of Electrical and Computer Engineering, 2017. vol. 20, pp. 1–25. doi:10.1155/2017/9324035. [Cross Ref]
    [2] Li, Y., Björck, F., &Xue, H. Iot architecture enabling dynamic security policies. In Proceedings of the 4th International Conference on Information and Network Security, 2016 (pp. 50-54). ACM. https://doi.org/10.1145/3026724.3026736. [Cross Ref]
    [3] Li Y, Björck F, Xue H. IoT Architecture Enabling Dynamic Security Policies. In: Proceedings of the 4th International Conference on Information and Network Security [Internet]. New York, NY, USA: Association for Computing Machinery; 2016. pp. 50–4. (ICINS ’16). https://doi.org/10.1145/3026724.3026736. [Cross Ref]
    [4] Bukhari, M. M., Ghazal, T. M., Abbas, S., Khan, M. A., Farooq, U., Wahbah, H., Ahmad, M., & Adnan, K. M. An Intelligent Proposed Model for Task Offloading in Fog-Cloud Collaboration Using Logistics Regression. Computational Intelligence and Neuroscience, 2022, 3606068. https://doi.org/10.1155/2022/3606068. [Cross Ref]
    [5] Poonam and Suman Sangwan (2022), Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing. IJEER 10(4), 994-998. DOI: 10.37391/IJEER.100440. [Cross Ref]
    [6] Kosta, S., Aucinas, A., Pan Hui, Mortier, R., & Xinwen Zhang. ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. 2012 Proceedings IEEE INFOCOM, pp. 945–953. https://doi.org/10.1109/INFCOM.2012.6195845. [Cross Ref]
    [7] Ting-Yi Lin, Ting-An Lin, Cheng-Hsin Hsu, & Chung-Ta King. Context-aware decision engine for mobile cloud offloading. 2013 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 111–116. https://doi.org/10.1109/WCNCW.2013.6533324. [Cross Ref]
    [8] Nakahara, F. A., & Beder, D. M. A context-aware and self-adaptive offloading decision support model for mobile cloud computing system. In Journal of Ambient Intelligence and Humanized Computing. 2018, (Vol. 9, Issue 5, pp. 1561–1572). https://doi.org/10.1007/s12652-018-0790-7. [Cross Ref]
    [9] Kim, H.W., Park, J.H. and Jeong, Y.S., Adaptive job allocation scheduler based on usage pattern for computing offloading of IoT. Future Generation Computer Systems, 2019, Vol. 98, pp.18-24. [Cross Ref]
    [10] Junior, W., Oliveira, E., Santos, A. and Dias, K., A context-sensitive offloading system using machine-learning classification algorithms for mobile cloud environment. Future Generation Computer Systems, 2019, 90, pp.503-520. [Cross Ref]
    [11] Shukla, S., Hassan, M. F., Khan, M. K., Jung, L. T., & Awang, A. An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment. PloS One, 2019, 14(11), e0224934. https://doi.org/10.1371/journal.pone.0224934. [Cross Ref]
    [12] Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generations Computer Systems: FGCS, 28(5), 2012, pp. 755–768. https://doi.org/10.1016/j.future.2011.04.017. [Cross Ref]
    [13] Benedetto, J.I., González, L.A., Sanabria, P., Neyem, A. and Navón, J., Towards a practical framework for code offloading in the Internet of Things. Future Generation Computer Systems, 2019, 92, pp.424-437. [Cross Ref]
    [14] Andras Janosi WS, Matthias Pfisterer, Robert Detrano. UCI Machine Learning Repository 2018 (assessed on 03 Jan 2022). https://archive.ics.uci.edu/ml/datasets/heart+Disease.
    [15] Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generations Computer Systems: FGCS, 78, 2018, pp. 641–658. https://doi.org/10.1016/j.future.2017.02.014. [Cross Ref]
    [16] Gállego, J. R., Hernández-Solana, A., Canales, M., Lafuente, J., Valdovinos, A., & Fernández-Navajas, J. Performance analysis of multiplexed medical data transmission for mobile emergency care over the UMTS channel. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 2005, 9(1), pp. 13–22. https://doi.org/10.1109/titb.2004.838362. [Cross Ref]
    [17] Alarsan, F. I., & Younes, M. Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. Journal of Big Data, 2019, 6(1), pp. 1–15. https://doi.org/10.1186/s40537-019-0244-x. [Cross Ref]
    [18] Wang, W., & Carreira-Perpinan. The role of dimensionality reduction in classification. In Proceedings of the AAAI Conference on Artificial Intelligence 2014, (Vol. 28, No. 1). [Cross Ref]
    [19] Fira, M., Costin, H.-N., & Goraș, L. On the Classification of ECG and EEG Signals with Various Degrees of Dimensionality Reduction. Biosensors,2021, 11(5). https://doi.org/10.3390/bios11050161. [Cross Ref]
    [20] Chaudhuri, A., Kakde, D., Sadek, C., Gonzalez, L., & Kong, S. The mean and median criteria for kernel bandwidth selection for support vector data description. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW) 2017, (pp. 842-849). IEEE. [Cross Ref]
    [21] Bukhari, M. M., Ghazal, T. M., Abbas, S., Khan, M. A., Farooq, U., Wahbah, H., Ahmad, M., & Adnan, K. M. An Intelligent Proposed Model for Task Offloading in Fog-Cloud Collaboration Using Logistics Regression. Computational Intelligence and Neuroscience, 2022, 3606068. https://doi.org/10.1155/2022/3606068. [Cross Ref]
    [22] Ali, Z., Abbas, Z. H., Abbas, G., Numani, A., & Bilal, M. Smart computational offloading for mobile edge computing in next-generation Internet of Things networks. Computer Networks, 2021, 198, 108356. https://doi.org/10.1016/j.comnet.2021.108356. [Cross Ref]

Karan Bajaj, Shaily Jain and Raman Singh (2023), Context-Aware Offloading for IoT Application using Fog-Cloud Computing . IJEER 11(1), 69-83. DOI: 10.37391/IJEER.110110.