FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Image Forgery Detection Using Integrated Convolution-LSTM (2D) and Convolution (2D)

Author(s): Yogita Shelar1*, Dr. Prashant Sharma2 and Dr.Chandan Singh. D. Rawat3

Publisher : FOREX Publication

Published : 30 June 2023

e-ISSN : 2347-470X

Page(s) : 631-638




Yogita Shelar*, Research scholar, Department of Computer Science, Pacific Institute of Technology, Udaipur, India; Email: yogitamshelar@gmail.com

Dr. Prashant Sharma, Assosiate Professor, Department of Computer science, Pacific Institute of Technology, Udaipur, India; Email: prashant.sharma@pacificit.ac.in

Dr.Chandan Singh. D. Rawat, Head Of Department of Electronic and Telecommunication Vivekanand Education Society's Institute of Technology, Chembur, India; Email: chandansingh.rawat@ves.ac.in

    [1] E. Aarthi, S. Jana, W. Gracy Theresa, M. Krishnamurthy, A. S. Prakaash, C. Senthilkumar, S. Gopalakrishnan (2022), Detection and Classification of MRI Brain Tumors using S3-DRLSTM Based Deep Learning Model. IJEER 10(3), 597-603. DOI: 10.37391/IJEER.100331. [Cross Ref]
    [2] Bayar, B., & Stamm, M. C. (2016). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10). [Cross Ref]
    [3] V Sanjay and P Swarnalatha (2022), Deep Learning Techniques for Early Detection of Alzheimer’s disease: A Review. IJEER 10(4), 899-905. DOI: 10.37391/IJEER.100425. [Cross Ref]
    [4] Bayar, B., & Stamm, M. C. (2018). Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. IEEE Transactions on Information Forensics and Security, 13(11), 2784-2797. [Cross Ref]
    [5] Yang, Y., Luo, Y., & Li, Z. (2019). A novel end-to-end deep learning architecture for image splicing detection. IEEE Transactions on Information Forensics and Security, 14(1), 54-69.
    [6] Salloum, S. A., & Bousselham, A. (2018). Image forgery detection using deep neural networks: A survey. Journal of Electronic Imaging, 27(4), 1-16.
    [7] Rahmani, H., & Mian, A. (2019). A deep learning approach to universal image manipulation detection using a new convolutional layer. IEEE Transactions on Information Forensics and Security, 14(3), 533-548.
    [8] Al-Qershi, O. M., & Ting, T. O. (2019). Deep neural network-based image forgery detection: A review. Artificial Intelligence Review, 51(3), 385-429.
    [9] Xu, Y., Wang, S., & Tan, T. (2018). Semi-supervised deep learning for image forgery detection. IEEE Transactions on Information Forensics and Security, 13(9), 2287-2302.
    [10] Yang, J., Zhang, J., Wu, W., & Liu, Q. (2019). Image forgery detection based on convolutional neural networks with attention mechanism. In Proceedings of the International Conference on Artificial Intelligence and Security (pp. 46-57).
    [11] Qu, C., & Shi, Y. Q. (2018). Universal image forgery detection based on multi-scale convolutional neural network. IEEE Transactions on Information Forensics and Security, 13(10), 2436-2451.
    [12] Zhu, J., Lu, H., & Li, H. (2018). Synthetic image forgery detection using GAN and one-class classifier. IEEE Transactions on Information Forensics and Security, 13(11), 2840-2855.
    [13] Fridrich, J., 2013. Digital image forensics. IEEE Signal Processing Magazine, 30(3), pp.150-155.
    [14] Li, W., Guo, J., Lu, X. and Wei, S., 2018. Image forgery detection using convolutional neural networks and clustering. IEEE Transactions on Multimedia, 20(3), pp.533-543.
    [15] Zhao, Y., Ren, J., Wang, Y., Zhang, Y. and Liu, L., 2018. A multi-level approach for image forgery detection using convolutional neural network. IEEE Access, 6, pp.10423-10434.
    [16] Li, Z., Xie, Y., Li, X., Wang, J. and Wang, S., 2019. Image forgery detection based on convolutional neural networks and feature pyramid networks. IEEE Access, 7, pp.173228-173240.
    [17] Sutthiwan, P., Pintavirooj, C. and Chongstitvatana, P., 2020. Deep learning-based forgery detection in digital images using convolutional neural network. IEEE Access, 8, pp.150406-150418.
    [18] Farid, H. and Lyu, S., 2003. Detecting hidden messages using higher-order statistics and support vector machines. In Proceedings of the 9th ACM multimedia conference (pp. 491-498). [Cross Ref]
    [19] Chen, M. and Fridrich, J., 2011. Steganalysis of compressed speech using selected higher-order statistics. IEEE Transactions on Information Forensics and Security, 6(3), pp.783-798.
    [20] Qian, Y., Dong, J., Tan, T. and Zhu, Y., 2015. Steganalysis of compressed speech using high-order statistical model and SVM. Journal of Signal Processing Systems, 80(3), pp.323-334.
    [21] Li, W., Li, X., Li, Z. and Li, S., 2018. Image forgery detection using multi-scale CNN with feature fusion. IEEE Access, 6, pp.45950-45959.
    [22] Bappy, J.H., Paul, M., Roy-Chowdhury, A.K. and Roy-Chowdhury, A., 2018. Exploiting spatial structure for localizing manipulated image regions. IEEE Transactions on Information Forensics and Security, 13(2), pp.477-490. [Cross Ref]
    [23] Zhang, J., Wang, T., Liu, L., & Wang, J. (2019). A Novel Deep Learning Method for Image Forgery Detection Based on Multi-Scale Features. IEEE Access, 7, 20422-20433.
    [24] Li, Y., Chang, E. C., & Wang, Y. (2019). Multi-scale dense convolutional neural networks for image forgery detection. IEEE Transactions on Information Forensics and Security, 14(4), 1094-1106.
    [25] Li, C., Cao, X., Li, Y., & Wang, S. (2019). Detecting Copy-Move Forgery in Images via Convolutional Neural Networks. IEEE Access, 7, 116546-116554.
    [26] Sun, Y., Xue, W., & Zhang, H. (2018). A hybrid deep learning network for image forgery detection. IEEE Access, 6, 20088-20099.
    [27] Qu, Z., Liu, X., Chen, C. L., & Zhou, J. (2019). Image forgery detection using a novel convolutional neural network. IEEE Access, 7, 92998-93006.
    [28] Yang, Y., Huang, J., & Shen, H. T. (2018). Exposing image splicing with inconsistency in noise level. IEEE Transactions on Information Forensics and Security, 13(1), 68-83.
    [29] Zhang, J., Wang, T., Liu, L., & Wang, J. (2019). A novel deep learning method for image forgery detection based on multi-scale features. IEEE Access, 7, 20422-20433.
    [30] Lin, X., & Li, X. (2018). Image forgery detection using deep convolutional neural network and attention mechanism. IEEE Access, 6, 33738-33747.

Yogita Shelar, Dr. Prashant Sharma and Dr. Chandan Singh. D. Rawat (2023), Image Forgery Detection Using Integrated Convolution-LSTM (2D) and Convolution (2D). IJEER 11(2), 631-638. DOI: 10.37391/ijeer.110253.