FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

An Evaluation of the Signal to Noise Ratio (SNR) of Next Generation Wireless Communication Systems using Large Intelligent Surfaces: Deep Learning Approach

Author(s): Jai Desai* and Shriram Markande

Publisher : FOREX Publication

Published : 30 October 2023

e-ISSN : 2347-470X

Page(s) : 949-955




Jai Desai*, Research Scholar, G H Raisoni College of Engineering and Management, SPPU, Pune; Assistant Professor at Sinhgad College of Engineering; Email: jai.desai04@gmail.com

Shriram Markande, Research Supervisor, G H Raisoni College of Engineering and Management, Pune; Email: sdmarkande@gmail.com

    [1] S. Gong, C. Xing, P. Yue, L. Zhao and T. Q. S. Quek (2023), Hybrid Analog and Digital Beamforming for RIS-Assisted mmWave Communications. IEEE Transactions on Wireless Communications, vol. 22 (3), 1537-1554.
    [2] M. Abbasi Msleh, F. Heliot and R. Tafazolli (2023), Ergodic Capacity Analysis of Reconfigurable Intelligent Surface Assisted MIMO Systems Over Rayleigh-Rician Channels. IEEE Communications Letters, vol. 27 (1) 75-79. DOI: 10.1109/LCOMM.2022.3221158.
    [3] J. A. Desai and S. D. Markande. A Review on Deep Learning Algorithms for Large Intelligent Surfaces in Next Generation Wireless Systems. In proceeding of 2022 IEEE Region 10 Symposium (TENSYMP): 1-3 July 2022; Mumbai, India: IEEE Publications; 2022.
    [4] Z. Li, H. Hu, J. Zhang and J. Zhang (2022), Coverage Analysis of Multiple Transmissive RIS-Aided Outdoor-to-Indoor mmWave Networks. IEEE Transactions on Broadcasting, vol. 68(4) 935-942. DOI: 10.1109/TBC.2022.3196169.
    [5] B. Sheen, J. Yang, X. Feng and M. M. U. Chowdhury (2021), A Deep Learning Based Modeling of Reconfigurable Intelligent Surface Assisted Wireless Communications for Phase Shift Configuration. IEEE Open Journal of the Communications Society, vol. 2, 262-272. DOI: 10.1109/OJCOMS.2021.3050119.
    [6] Y. Ge and J. Fan (2021), Beamforming Optimization for Intelligent Reflecting Surface Assisted MISO: A Deep Transfer Learning Approach. IEEE Transactions on Vehicular Technology, vol. 70 (4) 3902-3907. DOI: 10.1109/TVT.2021.3062870.
    [7] C. Feng, H. Lu, Y. Zeng, S. Jin and R. Zhang (2021), Wireless Communication with Extremely Large-Scale Intelligent Reflecting Surface. 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Xiamen, China, 2021, pp. 165-170, doi: 10.1109/ICCCWorkshops52231.2021.9538864.
    [8] A. Taha, M. Alrabeiah and A. Alkhateeb (2021), Enabling Large Intelligent Surfaces With Compressive Sensing and Deep Learning. IEEE Access, vol. 9, 44304-44321. DOI: 10.1109/ACCESS.2021.3064073.
    [9] A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis and S. Chatzinotas (2020) , Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems. IEEE Wireless Communications Letters, vol. 9(9) 1447-1451.DOI: 10.1109/LWC.2020.2993699.
    [10] The DeepMIMO paper: A. Alkhateeb (2019), DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications. In proceeding of The Information Theory and Applications Workshop (ITA), San Diego, CA.
    [11] Roy Karasik, Osvaldo Simeone , Marco Di Renzo , and Shlomo Shamai (Shitz). Beyond Max-SNR: Joint Encoding for Reconfigurable Intelligent Surfaces. In proceeding of 2020 IEEE International Symposium on Information Theory (ISIT); Los Angeles, CA, USA; IEEE publications; 2022.
    [12] N. Pillay and H. Xu(2021), Reconfigurable Intelligent Surface-Aided Single-Input Single-Output K-Complex Symbol Golden Codeword-Based Modulation. IEEE Access, vol. 9, 71849-71855 DOI: 10.1109/ACCESS.2021.3078884.
    [13] Coelho Ferreira, R., Facina, M.S.P.,de Figueiredo, F.A.P.; Fraidenraich, G., de Lima, E.R (2020). Large Intelligent Surfaces Communicating Through Massive MIMO Rayleigh Fading Channels. Sensors 2020(20), 6679. DOI: https://doi.org/10.3390/s20226679.
    [14] W. Yan, X. Yuan and X. Kuai (2020), Passive Beamforming and Information Transfer via Large Intelligent Surface. IEEE Wireless Communications Letters, vol. 9(4) 533-537, DOI: 10.1109/LWC.2019.2961670.

Jai Desai and Shriram Markande (2023), An Evaluation of the Signal to Noise Ratio (SNR) of Next Generation Wireless Communication Systems using Large Intelligent Surfaces: Deep Learning Approach. IJEER 11(4), 949-955. DOI: 10.37391/ijeer.110411.