FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Improving Intrusion Detection using Satin Bowerbird Optimization with Deep Learning Model for IIoT Environment

Author(s): E. Anbalagan, Dr P S V Srinivasa Rao, Dr. P. Vijayan, Dr Amarendra Alluri, Dr. D. Nageswari and Dr.R.Kalaivani

Publisher : FOREX Publication

Published : 20 march 2024

e-ISSN : 2347-470X

Page(s) : 219-227




E. Anbalagan, Professor Department of Computer science and Engineering Saveetha School of engineering, Saveetha Institute of medical and Technical sciences, Kanchipuram, Chennai; Email: anbalagane.sse@saveetha.com

Dr P S V Srinivasa Rao, Professor Department of Cyber security Sphoorthy Engineering College, Nadargul (V), Saroornagar (M), Hyderabad -501510; Email: parimirao66@gmail.com

Dr. P. Vijayan, Assistant Professor (SG), Department of Artificial Intelligence and Data Science , Saveetha Engineering College, Thandalam, Chennai –602105; Email: vijeyanpanneerselvam@gmail.com

Dr Amarendra Alluri, Professor EEE Department SR Gudlavalleru Engineering College, Gudlavalleru 521356; Email: amarendra@gecgudlavallerumic.in

Dr. D. Nageswari, Assistant professor Department of Science and humanities (General engineering Division) R.M.K. College of Engineering And Technology, Puduvoyal - 601 206; Email: nageswari@rmkcet.ac.in

Dr.R.Kalaivani*, Professor Department of Electronics &Communication Engineering Erode Sengunthar ENGINEERING college; Email: kalaivaniassistantprofessor@gmail.com

    [1] Li, F.; Lin, J.; Han, H. FSL: Federated sequential learning-based cyberattack detection for Industrial Internet of Things. Ind. Artif. Intell. 2023, 1, 4.
    [2] Khan, F.; Jan, M.A.; Alturki, R.; Alshehri, M.D.; Shah, S.T.; ur Rehman, A. A Secure Ensemble Learning-Based Fog-Cloud Approach for Cyberattack Detection in IoMT. IEEE Trans. Ind. Inform. 2023, 19, 10125–10132. [CrossRef]
    [3] Alkahtani, H.; Aldhyani, T.H. Intrusion detection system to advance Internet of Things infrastructure-based deep learning algorithms. Complexity 2021, 2021, 5579851. [CrossRef]
    [4] Alatawi, T.; Aljuhani, A. Anomaly Detection Framework in Fog-to-Things Communication for Industrial Internet of Things. Comput. Mater. Contin. 2022, 73, 1067–1086. [CrossRef]
    [5] Rouzbahani, H.M.; Bahrami, A.H.; Karimipour, H. A snapshot ensemble deep neural network model for attack detection in the industrial internet of things. In AI-Enabled Threat Detection and Security Analysis for Industrial IoT; Springer: Cham, Switzerland, 2021; pp. 181–194. [CrossRef]
    [6] Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
    [7] Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia, 10–12 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [CrossRef]
    [8] Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022, 198, 116924. [CrossRef]
    [9] Zhou, M.G.; Cao, X.Y.; Lu, Y.S.; Wang, Y.; Bao, Y.; Jia, Z.Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Experimental quantum advantage with quantum coupon collector. Research 2022, 2022, 798679.
    [10] Trojovský, P.; Dehghani, M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors 2022, 22, 855. [CrossRef]
    [11] Soliman, S., Oudah, W. and Aljuhani, A., 2023. Deep learning-based intrusion detection approach for securing industrial Internet of Things. Alexandria Engineering Journal, 81, pp.371-383. [CrossRef]
    [12] Abdel-Basset, M., Hawash, H., Chakrabortty, R.K. and Ryan, M.J., 2021. Semi-supervised spatiotemporal deep learning for intrusions detection in IoT networks. IEEE Internet of Things Journal, 8(15), pp.12251-12265. [CrossRef]
    [13] Marzouk, R., Alrowais, F., Negm, N., Alkhonaini, M.A., Hamza, M.A., Rizwanullah, M., Yaseen, I. and Motwakel, A., 2022. Hybrid deep learning enabled intrusion detection in clustered IIoT environment. Computers, Materials & Continua, 72(2), pp.3763-3775. [CrossRef]
    [14] Du, J., Yang, K., Hu, Y. and Jiang, L., 2023. Nids-cnnlstm: Network intrusion detection classification model based on deep learning. IEEE Access, 11, pp.24808-24821. [CrossRef]
    [15] Wang, T., Li, J., Wei, W., Wang, W. and Fang, K., 2022. Deep-learning-based weak electromagnetic intrusion detection method for zero touch networks on industrial IoT. IEEE Network, 36(6), pp.236-242. [CrossRef]
    [16] Alalayah, K.M., Alrayes, F.S., Alzahrani, J.S., Alaidarous, K.M., Alwayle, I.M., Mohsen, H., Ahmed, I.A. and Al Duhayyim, M., 2023. Optimal Deep Learning Based Intruder Identification in Industrial Internet of Things Environment. Computer Systems Science & Engineering, 46(3). [CrossRef]
    [17] Yao, X., Shao, Y., Fan, S. and Cao, S., 2022. Echo state network with multiple delayed outputs for multiple delayed time series prediction. Journal of the Franklin Institute, 359(18), pp.11089-11107. [CrossRef]
    [18] Chen, X., Cao, B. and Pouramini, S., 2023. Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study. Energy, 270, p.126874. [CrossRef]
    [19] https://www.kaggle.com/mrwellsdavid/unsw-nb15 .
    [20] https://www.kaggle.com/paresh2047/uci-semcom.
    [21] Kasongo, S.M. and Sun, Y., 2020. Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. Journal of Big Data, 7(1), pp.1-20. [CrossRef]
    [22] Kotecha, K.; Verma, R.; Rao, P.V.; Prasad, P.; Mishra, V.K.; Badal, T.; Jain, D.; Garg, D.; Sharma, S. Enhanced Network Intrusion Detection System. Sensors 2021, 21, 7835. https://doi.org/10.3390/ s21237835. [CrossRef]
    [23] Zhou, X., Hu, Y., Liang, W., Ma, J. and Jin, Q., 2020. Variational LSTM enhanced anomaly detection for industrial big data. IEEE Transactions on Industrial Informatics, 17(5), pp.3469-3477. [CrossRef]
    [24] Moldovan, D., Anghel, I., Cioara, T. and Salomie, I., 2020, September. Particle Swarm Optimization Based Deep Learning Ensemble for Manufacturing Processes. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 563-570). IEEE. [CrossRef]

E. Anbalagan, Dr P S V Srinivasa Rao, Dr. P. Vijayan, Dr Amarendra Alluri, Dr. D. Nageswari and Dr.R.Kalaivani (2024), Improving Intrusion Detection using Satin Bowerbird Optimization with Deep Learning Model for IIoT Environment. IJEER 12(1), 219-227. DOI: 10.37391/IJEER.120131.