FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

SimCoDe-NET: Similarity Detection in Binary Code using Deep Learning Network

Author(s): S. Poornima and R. Mahalakshmi

Publisher : FOREX Publication

Published : 20 march 2024

e-ISSN : 2347-470X

Page(s) : 262-267




S. Poornima*, Research Scholar, Department of Computer Science Engineering, Presidency University, Bangalore, Karnataka, India; Email: poornima.spa@gmail.com

R. Mahalakshmi, Professor, Department of Computer Science Engineering, Presidency University, Bangalore, Karnataka, India

    [1] Shin, E.C.R., Song, D. and Moazzezi, R. 2015. Recognizing functions in binaries with neural networks. In 24th {USENIX} Security Symposium, 611–626.
    [2] Lou, A., Cheng, S., Huang J. and Jiang, F. 2019. Tfdroid: android malware detection by topics and sensitive data flows using machine learning techniques. in Proceedings of the 2019 IEEE 2nd International Conference on Information and Computer Technologies, ICICT, Hawaii, HI, USA, 30–36. [CrossRef]
    [3] Shalev, N. and Partush, N. 2018. Binary similarity detection using machine learning. In: Proceedings of the 13th workshop on programming languages and analysis for security. ACM, New York, NY, USA, 42–47. [CrossRef]
    [4] Egele, M., Woo, M., Chapman, P. and Brumley, D. 2014. Blanket execution: Dynamic similarity testing for program binaries and components. In Proceedings of the 23rd USENIX Conference on Security Symposium. Berkeley, CA, USA: USENIX Association, 303–317.
    [5] Eschweiler, S., Yakdan, K. and Gerhards-Padilla, E. 2016. Discovre: Efficient crossarchitecture identification of bugs in binary code. In Proceedings of the 2016 network and distributed systems security symposium (NDSS). [CrossRef]
    [6] Wang, Y., Shen, J., Lin, J. and Lou, R. 2019. Staged method of code similarity analysis for firmware vulnerability detection, IEEE Access, 7, 14171–14185. [CrossRef]
    [7] Zhao, L., Li, D., Zheng, G. and Shi, W. 2018. Deep neural network based on android mobile malware detection system using opcode sequences. In: 2018 IEEE 18th International Conference on Communication Technology (ICCT) 1141–1147. [CrossRef]
    [8] Ananya Aswathy, Amal, T. R., Swathy, P. G., Vinod, P. and Mohammad, S. 2020. SysDroid: a dynamic ML-based android malware analyzer using system call traces. Cluster Computing 23(4), 2789–2808. [CrossRef]
    [9] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. and Shah, R. Signature verification using a siamese time delay neural network. Advances in neural information processing systems, 737–737. [CrossRef]
    [10] Zhang, X., Sun, M., Wang, J. and Wang, J. 2018. Malware detection based on opcode sequence and resnet. in Proceedings of the International Conference on Security with Intelligent Computing and Big-Data Services, Springer, Guilin, China, 489–502. [CrossRef]
    [11] Şahın, D.Ö., Kural, O.E., Akleylek, S. and Kiliç, E. 2018. New results on permission based static analysis for android malware. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS) 1–4. [CrossRef]
    [12] Yu, Z.,Cao, R.; Tang, Q., Nie, S., Huang, J. and Wu, S. 2020. Order matters: semantic-aware neural networks for binary code similarity detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, pp. 1145–1152. [CrossRef]
    [13] Shukla, S., Kolhe, G., PD, S.M. and Rafatirad, S. 2019. Stealthy malware detection using rnn-based automated localized feature extraction and classifier. In 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI) (IEEE), 590–597. [CrossRef]
    [14] Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, Zhuge, J. and Zhang, C. 2022. jtrans: Jump-aware transformer for binary code similarity. [CrossRef]
    [15] Zhang, W., Xu, Z., Xiao, Y. and Xue, Y. 2022. Unleashing the power of pseudo-code for binary code similarity analysis. Cybersecurity, 5(1), 23. [CrossRef]
    [16] XJiang, S., Wang, X., Yu and Gong, Y. 2022. Double‐Layer Positional Encoding Embedding Method for Cross‐Platform Binary Function Similarity Detection. Chinese Journal of Electronics, 31(4), 604-611. [CrossRef]
    [17] Sun, X., Wei, Q., Du, J. and Wang, Y. 2023. HEBCS: A High-Efficiency Binary Code Search Method. Electronics 12(16), 3464. [CrossRef]
    [18] Liu, G., Zhou, X., Pang, J., Yue, F., Liu, W. and Wang, J. 2023. Codeformer: A GNN-Nested Transformer Model for Binary Code Similarity Detection. Electronics, 12 (7), 1722. [CrossRef]
    [19] Wu, G. and Tang, H. 2023. Binary Code Vulnerability Detection Based on Multi-level Feature Fusion. IEEE Access.
    [20] Guo, J., Zhao, B., Liu, H., Leng, D.; An, Y. and Shu, G. 2023. DeepDual-SD: Deep Dual Attribute-Aware Embedding for Binary Code Similarity Detection. International Journal of Computational Intelligence Systems 16(1), 35. [CrossRef]
    [21] Huang, C., Zhu, G., Ge, G., Li, T. and Wang, J. FastBCSD: Fast and Efficient Neural Network for Binary Code Similarity Detection.
    [22] Yang, S., Dong, C., Xiao, Y., Cheng, Y., Shi, Z., Li, Z. and Sun, L.2003. Asteria-Pro: Enhancing Deep-Learning Based Binary Code Similarity Detection by Incorporating Domain Knowledge. ACM Transactions on Software Engineering and Methodology. [CrossRef]
    [23] Zuo, F., Li, X.,Young, P., Luo, L., Zeng, Q. and Zhang, Z. 2018. Neural machine translation inspired binary code similarity comparison beyond function pairs. arXiv preprint arXiv:1808.04706. [CrossRef]
    [24] Arutunian, M., Hovhannisyan, H., Vardanyan, V., Sargsyan, S., Kurmangaleev, S. and Aslanyan, H. 2021. A Method to Evaluate Binary Code Comparison Tools. In 2021 Ivannikov Memorial Workshop (IVMEM), 3-5. [CrossRef]
    [25] Massarelli, L., Di Luna, G.A., Petroni, F., Baldoni, R. and Querzoni, L. 2019. Safe: Self-attentive function embeddings for binary similarity. In Detection of Intrusions and Malware, and Vulnerability Assessment. 16th International Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019 Proceedings 16, 309-329. [CrossRef]

S. Poornima and R. Mahalakshmi (2024), SimCoDe-NET: Similarity Detection in Binary Code using Deep Learning Network. IJEER 12(1), 262-267. DOI: 10.37391/IJEER.120136.