FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

DFIG in Wind Energy Applications with High Order Sliding Mode Observer-based Fault-Tolerant Control Scheme using Sea Gull Optimization

Author(s): Sarika. S* and Anitha Janet Mary. S

Publisher : FOREX Publication

Published : 30 April 2024

e-ISSN : 2347-470X

Page(s) : 352-358




Sarika. S*, Research Scholar, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu, India; Email: sarika.ajith@yahoo.in

Anitha Janet Mary. S, Associate Professor, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Kanyakumari, Tamil Nadu, India; Email: anitharuphus@gmail.com

    [1] Ebrahimkhani, S. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Trans. 2016, Volume 63, pp. 343-354. [CrossRef]
    [2] Beltran, B.; Ahmed-Ali, T.; Benbouzid, M. E. H. High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. 2008, Volume 56, No 9, pp. 3314-3321. [CrossRef]
    [3] Asghar, M. Performance comparison of wind turbine based doubly fed induction generator system using fault tolerant fractional and integer order controllers. Renewable Energy 2018, Volume 116, pp. 244-264. [CrossRef]
    [4] Sami, M.; Patton, R. J. Fault tolerant adaptive sliding mode controller for wind turbine power maximisation. IFAC Proceedings Volumes 2012, Volume 45, No 13, pp. 499-504. [CrossRef]
    [5] Yang, Z.; Chai, Y. A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems. Renewable Sustainable Energy Rev. 2016, Volume 66, pp. 345-359. [CrossRef]
    [6] Xiahou, K. S.; Liu, Y.; Li, M. S.; Wu, Q. H. Sensor fault-tolerant control of DFIG based wind energy conversion systems. Int. J. Electr. Power Energy Syst. 2020, Volume 117, pp. 105563. [CrossRef]
    [7] Fekih, A.; Mobayen, S.; Chen, C. C. Adaptive robust fault-tolerant control design for wind turbines subject to pitch actuator faults. Energies 2021, Volume 14, No 6, pp. 1791. [CrossRef]
    [8] Wu, Z. Q.; Yang, Y.; Xu, C. H. Adaptive fault diagnosis and active tolerant control for wind energy conversion system. Int. J. Control Autom. Syst. 2015, Volume 13, pp. 120-125. [CrossRef]
    [9] Wu, A.; Zhao, B.; Mao, J.; Wu, B.; Yu, F. Adaptive active fault-tolerant MPPT control for wind power generation system under partial loss of actuator effectiveness. Int. J. Electr. Power Energy Syst.2019, Volume 105, pp. 660-670. [CrossRef]
    [10] Long, W.; Jiao, J.; Liang, X.; Xu, M.; Wu, T.; Tang, M.; Cai, S. A velocity-guided Harris hawks optimizer for function optimization and fault diagnosis of wind turbine. Artif. Intell. Rev. 2023, Volume 56, No 3, pp. 2563-2605. [CrossRef]
    [11] Ghanbarpour, K.; Bayat, F.; Jalilvand, A. Dependable power extraction in wind turbines using model predictive fault tolerant control. Int. J. Electr. Power Energy Syst. 2020, Volume 118, pp. 105802. [CrossRef]
    [12] Martinez, M. I.; Tapia, G.; Susperregui, A.; Camblong, H. Sliding-mode control for DFIG rotor-and grid-side converters under unbalanced and harmonically distorted grid voltage. IEEE Trans. Energy Convers. 2012, Volume 27, No 2, pp. 328-339. [CrossRef]
    [13] Kusiak, A.; Verma, A. A data-driven approach for monitoring blade pitch faults in wind turbines. IEEE Trans. Sustainable Energy 2010, Volume 2, No 1, pp. 87-96. [CrossRef]
    [14] Lu, D.; Qiao, W.; Gong, X. Current-based gear fault detection for wind turbine gearboxes. IEEE Trans. Sustainable Energy 2017, Volume 8, No 4, pp. 1453-1462. [CrossRef]
    [15] Hoffmann, R. A comparison of control concepts for wind turbines in terms of energy capture (Doctoral dissertation, Technische Universität) 2002.
    [16] Shi, Y. T.; Xiang, X.; Wang, L.; Zhang, Y.; Sun, D. H. Stochastic model predictive fault tolerant control based on conditional value at risk for wind energy conversion system. Energies 2018, Volume 11, No 1, pp. 193. [CrossRef]
    [17] Li, S.; Wang, H.; Aitouche, A.; Christov, N. Active fault tolerant control of wind turbine systems based on DFIG with actuator fault and disturbance using Takagi–Sugeno fuzzy model. J. Franklin Inst. 2018, Volume 355, No 16, pp. 8194-8212. [CrossRef]
    [18] Vidal, Y.; Tutivén, C.; Rodellar, J.; Acho, L. Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator. Energies 2015, Volume 8, No 5, pp. 4300-4316. [CrossRef]
    [19] Beltran, B.; Benbouzid, M. E. H.; Ahmed-Ali, T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Transactions on Energy Conversion 2012, Volume 27, No 2, pp. 261-269. [CrossRef]
    [20] Ullah, N.; Sami, I.; Jamal Babqi, A.; I Alkhammash, H.; Belkhier, Y.; Althobaiti, A.; Ibeas, A. Processor in the loop verification of fault tolerant control for a three-phase inverter in grid connected PV system. Energy Sources Part A 2023, Volume 45, No 2, pp. 3760-3776. [CrossRef]

Sarika. S and Anitha Janet Mary. S (2024), DFIG in Wind Energy Applications with High Order Sliding Mode Observer-based Fault-Tolerant Control Scheme using Sea Gull Optimization. IJEER 12(2), 352-358. DOI: 10.37391/IJEER.120204.