Research Article |
DFIG in Wind Energy Applications with High Order Sliding Mode Observer-based Fault-Tolerant Control Scheme using Sea Gull Optimization
Author(s): Sarika. S* and Anitha Janet Mary. S
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 2
Publisher : FOREX Publication
Published : 30 April 2024
e-ISSN : 2347-470X
Page(s) : 352-358
Abstract
This paper describes a new method for maximizing power extraction from a wind energy conversion system (WECS) by using a doubly fed induction generator (DFIG) that operates below nominal wind speed. To maximize the collected power of a wind turbine (WTG) exposed to actuator failure, a fault-tolerant high-order sliding mode observer (HOSMO) and Seagull Optimization Algorithm with a model predictive controller (MPC) technique is proposed. Evaluate both the real state and the sensor error simultaneously using a higher-order sliding-mode observer. Active fault tolerant controllers are designed to regulate wind turbine rotor speed and power in the presence of actuator defects and uncertainty. With the growing interest in employing wind turbines (WTGs) as the primary generators of electrical energy, fault tolerance has been seen as essential to improving efficiency and reliability. This research focuses on optimal fault-tolerant pitch control, which is used to modify the pitch angle of wind turbine blades in the event of sensor, actuator, and system failures. A Seagull Optimization Algorithm (SOA) is proposed to tune controller parameters to improve the performance of WT. The proposed method has achieved 92% of power tracking performance when compared to existing method.
Keywords: High Order Sliding Mode Observer (HOSMO)
, Seagull Optimization algorithm (SOA)
, Doubly-fed induction generator (DFIG)
.
Sarika. S*, Research Scholar, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu, India; Email: sarika.ajith@yahoo.in
Anitha Janet Mary. S, Associate Professor, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, Kanyakumari, Tamil Nadu, India; Email: anitharuphus@gmail.com
-
[1] Ebrahimkhani, S. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Trans. 2016, Volume 63, pp. 343-354. [CrossRef]
-
[2] Beltran, B.; Ahmed-Ali, T.; Benbouzid, M. E. H. High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. 2008, Volume 56, No 9, pp. 3314-3321. [CrossRef]
-
[3] Asghar, M. Performance comparison of wind turbine based doubly fed induction generator system using fault tolerant fractional and integer order controllers. Renewable Energy 2018, Volume 116, pp. 244-264. [CrossRef]
-
[4] Sami, M.; Patton, R. J. Fault tolerant adaptive sliding mode controller for wind turbine power maximisation. IFAC Proceedings Volumes 2012, Volume 45, No 13, pp. 499-504. [CrossRef]
-
[5] Yang, Z.; Chai, Y. A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems. Renewable Sustainable Energy Rev. 2016, Volume 66, pp. 345-359. [CrossRef]
-
[6] Xiahou, K. S.; Liu, Y.; Li, M. S.; Wu, Q. H. Sensor fault-tolerant control of DFIG based wind energy conversion systems. Int. J. Electr. Power Energy Syst. 2020, Volume 117, pp. 105563. [CrossRef]
-
[7] Fekih, A.; Mobayen, S.; Chen, C. C. Adaptive robust fault-tolerant control design for wind turbines subject to pitch actuator faults. Energies 2021, Volume 14, No 6, pp. 1791. [CrossRef]
-
[8] Wu, Z. Q.; Yang, Y.; Xu, C. H. Adaptive fault diagnosis and active tolerant control for wind energy conversion system. Int. J. Control Autom. Syst. 2015, Volume 13, pp. 120-125. [CrossRef]
-
[9] Wu, A.; Zhao, B.; Mao, J.; Wu, B.; Yu, F. Adaptive active fault-tolerant MPPT control for wind power generation system under partial loss of actuator effectiveness. Int. J. Electr. Power Energy Syst.2019, Volume 105, pp. 660-670. [CrossRef]
-
[10] Long, W.; Jiao, J.; Liang, X.; Xu, M.; Wu, T.; Tang, M.; Cai, S. A velocity-guided Harris hawks optimizer for function optimization and fault diagnosis of wind turbine. Artif. Intell. Rev. 2023, Volume 56, No 3, pp. 2563-2605. [CrossRef]
-
[11] Ghanbarpour, K.; Bayat, F.; Jalilvand, A. Dependable power extraction in wind turbines using model predictive fault tolerant control. Int. J. Electr. Power Energy Syst. 2020, Volume 118, pp. 105802. [CrossRef]
-
[12] Martinez, M. I.; Tapia, G.; Susperregui, A.; Camblong, H. Sliding-mode control for DFIG rotor-and grid-side converters under unbalanced and harmonically distorted grid voltage. IEEE Trans. Energy Convers. 2012, Volume 27, No 2, pp. 328-339. [CrossRef]
-
[13] Kusiak, A.; Verma, A. A data-driven approach for monitoring blade pitch faults in wind turbines. IEEE Trans. Sustainable Energy 2010, Volume 2, No 1, pp. 87-96. [CrossRef]
-
[14] Lu, D.; Qiao, W.; Gong, X. Current-based gear fault detection for wind turbine gearboxes. IEEE Trans. Sustainable Energy 2017, Volume 8, No 4, pp. 1453-1462. [CrossRef]
-
[15] Hoffmann, R. A comparison of control concepts for wind turbines in terms of energy capture (Doctoral dissertation, Technische Universität) 2002.
-
[16] Shi, Y. T.; Xiang, X.; Wang, L.; Zhang, Y.; Sun, D. H. Stochastic model predictive fault tolerant control based on conditional value at risk for wind energy conversion system. Energies 2018, Volume 11, No 1, pp. 193. [CrossRef]
-
[17] Li, S.; Wang, H.; Aitouche, A.; Christov, N. Active fault tolerant control of wind turbine systems based on DFIG with actuator fault and disturbance using Takagi–Sugeno fuzzy model. J. Franklin Inst. 2018, Volume 355, No 16, pp. 8194-8212. [CrossRef]
-
[18] Vidal, Y.; Tutivén, C.; Rodellar, J.; Acho, L. Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator. Energies 2015, Volume 8, No 5, pp. 4300-4316. [CrossRef]
-
[19] Beltran, B.; Benbouzid, M. E. H.; Ahmed-Ali, T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Transactions on Energy Conversion 2012, Volume 27, No 2, pp. 261-269. [CrossRef]
-
[20] Ullah, N.; Sami, I.; Jamal Babqi, A.; I Alkhammash, H.; Belkhier, Y.; Althobaiti, A.; Ibeas, A. Processor in the loop verification of fault tolerant control for a three-phase inverter in grid connected PV system. Energy Sources Part A 2023, Volume 45, No 2, pp. 3760-3776. [CrossRef]