f Improvement of 5G Core Network Performance using Network Slicing and Deep Reinforcement Learning
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Improvement of 5G Core Network Performance using Network Slicing and Deep Reinforcement Learning

Author(s): Fred Otieno Okello*, Vitalice Oduol, Ciira Maina and Antonio Apiyo

Publisher : FOREX Publication

Published : 30 May 2024

e-ISSN : 2347-470X

Page(s) : 493-502




Fred Otieno Okello*, Department of Electrical Engineering, Pan Africa University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), Juja, Kenya; Email: kogsokello@gmail.com

Vitalice Oduol, Department of Electrical and Information Engineering, University of Nairobi of Nairobi, Nairobi, Kenya

Ciira Maina, Centre for Data Science and Artificial Intelligence, Dedan Kimathi University of Technology, Nyeri, Kenya

Antonio Apiyo, Nokia Mobile Networks, Wroclaw, Poland

    [1] ITU International Library. Setting the scene for 5g: Opportunities and challenges. Report, 2018. URL http://handle.itu.int/11.1002/pub/811d7a5f-en.
    [2] A. Platek, J. You, and R. Pandey. AI-Powered 5G Operations. Episode 2, Ericsson Podcast Series, 2021. URL https://www.ericsson.com/en/ai/ai-operations-podcast/ai-powered-5g-Operations.
    [3] C. Ssengozi, P. Kogeda, and T. Olwal. A survey of deep reinforcement learning application in 5g and beyond network slicing and virtualization. Array, 14:100142, 2022. URL https://doi.org/10.1016/j.array.2022.100142. [CrossRef]
    [4] 3GPP TS 23.501 V16.4.0. System architecture for the 5G System (5GS). Release 16, 2020.
    [5] Q. Ye, W. Zhuang, S. Zhang, A. Jin, X. Shen, and X. Li. Dynamic radio resource slicing for a two-tier heterogeneous wireless network. IEEE Trans Veh Technol, 67(10):9896, 2019. [CrossRef]
    [6] G. Zhous, L. Zhao, K. Liang, and G. Zhen. Utility analysis of radio access network slicing. IEEE Trans Veh Technol, 67(10):99, 2019.
    [7] H. Yang, T. So, and Y. Xu. Chapter 12 - 5G Network Slicing, pages 621–639. Elsevier, 2022. ISBN 9780323910606. [CrossRef]
    [8] I. Levya-Pupo, C. Cervel, and A. Llorens-Carrodeguas. Optimal placement of user plane functions in 5g networks. Wired/Wireless Internet Communications, 2019. URL https://api.semanticscholar.org/CorpusID:202550252. [CrossRef]
    [9] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin. Improving traffic forecasting for 5g core network scalability: A machine learning approach. IEEE Network, 32(6):42–49, 2018. [CrossRef]
    [10] P. D. Bojovi´c, T. Malbaˇsi´c, D. Vujoˇsevi´c, G. Marti´c, and Z. Bojovi´c. Dynamic QoS management for a flexible 5g/6g network core: A step toward a higher programmability. Sensors, 22(8):2849, 2022. URL https://doi.org/10.3390/s22082849. [CrossRef]
    [11] J. Moysen and L. Giupponi. From 4g to 5g: Self organized network management meets machine learning. Computer Communications, 129:248–268, 2018.
    [12] H. T. Nguyen, T. Van Do, and C. Rotter. Scaling upf instances in 5g/6g core with deep reinforcement learning. IEEE Access, 9:165892–165906, 2021. URL https://doi.org/10.1109/access.2021.3135315. [CrossRef]
    [13] P. et al. Rost. Mobile network architecture evolution toward 5g. IEEE Communications Magazine, 54(5):84–91, 2016. doi: https://doi.org/10.1109/MCOM.2016.7470940. [CrossRef]
    [14] N. Van Giang and Y. H. Kim. Slicing the next mobile packet core network. In 2020 11th International Symposium on Wireless Communications Systems (ISWCS), pages 901–904, 2020. [CrossRef]
    [15] Q. Ye, J. Li, K. Qu, W. Zhuang, X. S. Shen, and X. Li. End-to-end quality of service in 5g networks: Examining the effectiveness of a network slicing framework. IEEE Vehicular Technology Magazine, 13(2):65–74, 2018. [CrossRef]
    [16] H. Wei, Z. Zhang, and B. Fan. Network slice access selection scheme in 5g. In 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pages 352–356, 2017. [CrossRef]
    [17] O. Sallent, J. Perez-Romero, R. Ferrus, and R. Agusti. Radio access network slicing from a radio resource management perspective. IEEE Wirel. Commun., 24(5):166–174, 2017. URL https://doi.org/10.1109/MWC.2017 .1600220WC. [CrossRef]
    [18] C. Tsai, F. Lin, and H. Tanaka. Evaluation of 5g core slicing on user plane function. Communications and Network, 13:79–92, 2019. [CrossRef]
    [19] H. Yang, T. So, and Y. Xu. Chapter 12 - 5G Network Slicing, pages 621–639. Elsevier, 2022. ISBN 9780323910606. doi: 10.1016/B978-0-323-91060-6.00012. [CrossRef]
    [20] ETSI GS NFV 001 099 v2.1.1, URL https://www.etsi.org/deliver/etsi_gs/nfv/001_099/006/02.01.01_60/gs_nf v006v020101p.pdf.
    [21] ETSI GS ZSM 001 099 v1.1.1, URL https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/00901/01.01.01_60/g s_ZSM00901v010101p.pdf.
    [22] K. Muppavaram, S. Govathoti, D. Kamidi, and T. Bhaskar. Exploring the generations: A comparative study of mobile technology from 1g to 5g. International Journal of Electronics and Communication Engineering, 10(7): 54–62, 2023. [CrossRef]
    [23] R. et al. Li. Deep reinforcement learning for resource management in network slicing. IEEE Access, 6:74429–74441, 2018. doi: 10.1109/ACCESS.2018.2881964. [CrossRef]
    [24] B. S. Teja and V. M. John. Generations of wireless mobile networks: An overview. In Proceedings of International Conference on Deep Learning, Computing, and Intelligence. Springer, 2022.
    [25] ITU. Framework of the imt-2020 network. Technical Report Y.May, ITU-T, 2018.
    [26] P. Subedi, A. Alsadoon, and P. W. C. Rasad. Network slicing: A next-generation 5g perspective. J Wireless Com Network, 102, 2021. URL https://doi.org/10.1186/s13638-021-01983. [CrossRef]
    [27] V. M. Alevizaki, A. I. Manolopoulos, M. Anastasopoulos, and A. Tzanakaki. Dynamic user plane function allocation in 5g networks enabled by optical network nodes. In 2021 European Conference on Optical Communication (ECOC), pages 1–4, 2021. [CrossRef]
    [28] K. Godfrey, S. Joan, G. Juanluis, Y. Haipeng, and Z. Peiying. A reinforcement learning-based approach for 5g network slicing across multiple domains. In 15th International Conference on Network and Service Management, 2019. [CrossRef]
    [29] H. T. Nguyen, T. Van Do, and C. Rotter. Scaling upf instances in 5g/6g core with deep reinforcement learning. IEEE Access, 9:165892–165906, 2021. doi: https://doi.org/10.1109/access.2021.3135315. [CrossRef]
    [30] X. Chen, Z. Li, Y. Zhang, R. Long, H. Yu, X. Du, and M. Guizani. Reinforcement learning-based QoS/QoE-aware service function chaining in software-driven 5g slices. [CrossRef]
    [31] C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys (&) Tutorials, 21(3):2224–2287, 2019. doi: 10.1109/COMST.2019.2904897. [CrossRef]

Fred Otieno Okello, Vitalice Oduol, Ciira Maina and Antonio Apiyo (2024), Improvement of 5G Core Network Performance using Network Slicing and Deep Reinforcement Learning. IJEER 12(2), 493-502. DOI: 10.37391/IJEER.120222.