Research Article |
Control for Wind Turbine System using PMSG when Wind Speed Changes
Author(s): Pham Van Minh*
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 2
Publisher : FOREX Publication
Published : 30 May 2024
e-ISSN : 2347-470X
Page(s) : 520-528
Abstract
This paper presents the proposed model to control grid-connected wind turbine by permanent magnet synchronous generator (PMSG). With the wind speed changing continuously, the rotor system needs to be able to self-regulate according to wind speed and direction to ensure efficient operation of the turbine. The PMSG was chosen because the magnetic flux is always available thanks to the permanent magnet system glued to the rotor surface. The generator provides power with low rotational speed but high efficiency. These are the important advantages of using PMSG for wind turbine. Matlab - Simulink software was used to design the controllers and the survey results proved that this control system meets the power quality requirements when connecting to the grid and optimizing the energy conversion process for turbine wind.
Keywords: wind energy conversion system
, permanent magnet synchronous generator
, maximum power point tracking
, generator side converter
, wind turbine
.
Pham Van Minh*, Faculty of Electrical-Automation, University of Economics-Technology for Industries, Hanoi, Vietnam; Email: pvminh@uneti.edu.vn
-
[1] Gupta, R. A., Singh, B., & Jain, B. B. (2015). Wind energy conversion system using PMSG. 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE). doi:10.1109/rdcape.2015.7281395. [CrossRef]
-
[2] Rolan, A., Luna, A., Vazquez, G., Aguilar, D., & Azevedo, G. (2009). Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator. 2009 IEEE International Symposium on Industrial Electronics. doi:10.1109/isie.2009.5218120. [CrossRef]
-
[3] Sharma, H. K., Samaria, A., & Gidwani, L. (2017). Designing and performance analysis of controller for PMSG based wind energy conversion system. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). doi:10.1109/icomicon.2017.8279159. [CrossRef]
-
[4] Kang, L., Shi, L., Ni, Y., Yao, L., & Masoud, B. (2011). Small signal stability analysis with penetration of grid-connected wind farm of PMSG type. 2011 International Conference on Advanced Power System Automation and Protection. doi:10.1109/apap.2011.6180400. [CrossRef]
-
[5] Chi, Y., Liu, C., Tian, X., Shi, L., & Tang, H. (2017). Modeling of Full-scale Converter Wind Turbine Generator. Modeling and Modern Control of Wind Power, 85–115. doi:10.1002/9781119236382.ch5. [CrossRef]
-
[6] Bonfiglio, A., Delfino, F., Gonzalez-Longatt, F., & Procopio, R. (2017). Steady-state assessments of PMSGs in wind generating units. International Journal of Electrical Power & Energy Systems, 90, 87–93. doi:10.1016/j.ijepes.2017.02.002. [CrossRef]
-
[7] Kumar Sharma, H., Samaria, A., & Gidwani, L. (2018). Power Optimization Technique for Small Wind Turbine System Using an Incremental Current Control. 2018 Internat2018 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)ional Conference on Computation of Power, Energy, Information and Communication (ICCPEIC). doi:10.1109/iccpeic.2018.8525227.
-
[8] Baran, J., & Jąderko, A. (2020). An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation. Energies, 13(23), 6344. doi:10.3390/en13236344. [CrossRef]
-
[9] Nazir, M. S., Mahdi, A. J., Bilal, M., Sohail, H. M., Ali, N., & Iqbal, H. M. N. (2019). Environmental impact and pollution-related challenges of renewable wind energy paradigm – A review. Science of The Total Environment. doi:10.1016/j.scitotenv.2019.05.274. [CrossRef]
-
[10] Olabi, A. G., Wilberforce, T., Elsaid, K., Salameh, T., Sayed, E. T., Husain, K. S., & Abdelkareem, M. A. (2021). Selection Guidelines for Wind Energy Technologies. Energies, 14(11), 3244. doi:10.3390/en14113244. [CrossRef]
-
[11] Nazir, M. S., Ali, N., Bilal, M., & Iqbal, H. M. N. (2020). Potential environmental impacts of wind energy development – A global perspective. Current Opinion in Environmental Science & Health. doi:10.1016/j.coesh.2020.01.002. [CrossRef]
-
[12] Cao, W., Xie, Y., & T, Z. (2012). Wind Turbine Generator Technologies. Advances in Wind Power. doi:10.5772/51780. [CrossRef]
-
[13] Willenberg, D., Winkens, A., & Linnartz, P. (2020). Impact of wind turbine generator technologies and frequency controls on the stable operation of medium voltage islanded microgrids. Electric Power Systems Research, 189, 106760. doi:10.1016/j.epsr.2020.106760. [CrossRef]
-
[14] Apata, O., & Oyedokun, D. T. O. (2017). Wind turbine generators: Conventional and emerging technologies. 2017 IEEE PES PowerAfrica. doi:10.1109/powerafrica.2017.7991295. [CrossRef]
-
[15] Kesraoui, M., Korichi, N., & Belkadi, A. (2011). Maximum power point tracker of wind energy conversion system. Renewable Energy, 36(10), 2655–2662. doi:10.1016/j.renene.2010.04.028. [CrossRef]
-
[16] Heydari, M., & Smedley, K. (2015). Comparison of maximum power point tracking methods for medium to high power wind energy systems. 2015 20th Conference on Electrical Power Distribution Networks Conference (EPDC). doi:10.1109/epdc.2015.7330493.
-
[17] Zebraoui, O., & Bouzi, M. (2018). Comparative study of different MPPT methods for wind energy conversion system. IOP Conference Series: Earth and Environmental Science, 161, 012023. doi:10.1088/1755-1315/161/1/012023. [CrossRef]
-
[18] Mousa, H. H. H., Youssef, A.-R., & Mohamed, E. E. M. (2021). State of the art perturb and observe MPPT algorithms based wind energy conversion systems: A technology review. International Journal of Electrical Power & Energy Systems, 126, 106598. doi:10.1016/j.ijepes.2020.106598. [CrossRef]
-
[19] Mohan, M., & Vittal, K. P. (2018). Modeling and Simulation of PMSG-Based Wind Power Generation System. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). doi:10.1109/rteict42901.2018.9012. [CrossRef]
-
[20] Pindoriya, R. M., Usman, A., Rajpurohit, B. S., & Srivastava, K. N. (2017). PMSG based wind energy generation system: Energy maximization and its control. 2017 7th International Conference on Power Systems (ICPS). doi:10.1109/icpes.2017.8387323. [CrossRef]
-
[21] Kim, Y.-S., Chung, I.-Y., & Moon, S.-I. (2015). Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds. Energies, 8(2), 1406–1425. doi:10.3390/en8021406. [CrossRef]
-
[22] Frikh, M. L., Soltani, F., Bensiali, N., Boutasseta, N., & Fergani, N. (2021). Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches. Computers & Electrical Engineering, 95, 107410. doi:10.1016/j.compeleceng.2021.10. [CrossRef]
-
[23] Eltamaly, A. M., & Farh, H. M. (2013). Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, 97, 144–150. doi:10.1016/j.epsr.2013.01.001. [CrossRef]
-
[24] Minh, H. Q., Frédéric, N., Najib, E., & Abdelaziz, H. (2012). Fuzzy Control of Variable Speed Wind Turbine Using Permanent Magnet Synchronous Machine for Stand-Alone System. Smart Innovation, Systems and Technologies, 31–44. doi:10.1007/978-3-642-27509-8_3. [CrossRef]
-
[25] Soliman, M. A., Hasanien, H., Azazi, H. Z., El-kholy, E. E., & Mahmoud, S. A. (2018). An Adaptive Fuzzy Logic Control Strategy for Performance Enhancement of a Grid-Connected PMSG-Based Wind Turbine. IEEE Transactions on Industrial Informatics, 1–1. doi:10.1109/tii.2018.2875922. [CrossRef]
-
[26] Beltran, B., Ahmed-Ali, T., & El Hachemi Benbouzid, M. (2008). Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems. IEEE Transactions on Energy Conversion, 23(2), 551–558. doi:10.1109/tec.2007.914163. [CrossRef]
-
[27] Krim, Y., Abbes, D., Krim, S., & Mimouni, M. F. (2017). Classical vector, first-order sliding-mode and high-order sliding-mode control for a grid-connected variable-speed wind energy conversion system: A comparative study. Wind Engineering, 42(1), 16–37. doi:10.1177/0309524x17723202. [CrossRef]
-
[28] Lee, S.-W., & Chun, K.-H. (2019). Adaptive Sliding Mode Control for PMSG Wind Turbine Systems. Energies, 12(4), 595. doi:10.3390/en12040595. [CrossRef]
-
[29] Fathabadi, H. (2018). Optimal control of a wind energy conversion system and a wind turbine. Optimal Control Applications and Methods, 39(4), 1354–1370. doi:10.1002/oca.2415. [CrossRef]
-
[30] Bratcu, A. I., Munteanu, I., & Ceanga, E. (2008). Optimal control of wind energy conversion systems: From energy optimization to multi-purpose criteria - A short survey. 2008 16th Mediterranean Conference on Control and Automation. doi:10.1109/med.2008.4602183. [CrossRef]
-
[31] GAO, X., WANG, X., & HE, J. (2020). Optimal control of pitch angle of large wind turbine based on speed differential. E3S Web of Conferences, 194, 03008. doi:10.1051/e3sconf/202019403008.
-
[32] Wei, C., Zhang, Z., Qiao, W., & Qu, L. (2015). Reinforcement-Learning-Based Intelligent Maximum Power Point Tracking Control for Wind Energy Conversion Systems. IEEE Transactions on Industrial Electronics, 62(10), 6360–6370. doi:10.1109/tie.2015.2420792.
-
[33] Wei, C., Zhang, Z., Qiao, W., & Qu, L. (2016). An Adaptive Network-Based Reinforcement Learning Method for MPPT Control of PMSG Wind Energy Conversion Systems. IEEE Transactions on Power Electronics, 31(11), 7837–7848. doi:10.1109/tpel.2016.2514370.
-
[34] Saenz-Aguirre, A., Zulueta, E., Fernandez-Gamiz, U., Lozano, J., & Lopez-Guede, J. (2019). Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control. Energies, 12(3), 436. doi:10.3390/en12030436. [CrossRef]
-
[35] TOMIN, N., KURBATSKY, V., & GULIYEV, H. (2019). Intelligent Control of a Wind Turbine based on Reinforcement Learning. 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). doi:10.1109/elma.2019.8771645.
-
[36] Jaramillo-Lopez, F., Kenne, G., & Lamnabhi-Lagarrigue, F. (2016). A novel online training neural network-based algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum power extraction. Renewable Energy, 86, 38–48. doi:10.1016/j.renene.2015.07.071.
-
[37] Driss, B., Farhat, S., Abdelilah, K., & Rachid, E. M. A. M. (2020). Adaptive control for variable-speed wind generation systems using advanced RBF Neural Network. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). doi:10.1109/iraset48871.2020.9092.
-
[38] Douanla, R. M., Kenné, G., Pelap, F. B., & Fotso, A. S. (2018). A Modified RBF Neuro-Sliding Mode Control Technique for a Grid Connected PMSG Based Variable Speed Wind Energy Conversion System. Journal of Control Science and Engineering, 2018, 1–19. doi:10.1155/2018/1780634.
-
[39] Tanvir, A. A., & Merabet, A. (2020). Artificial Neural Network and Kalman Filter for Estimation and Control in Standalone Induction Generator Wind Energy DC Microgrid. Energies, 13(7), 1743. doi:10.3390/en13071743.
-
[40] Beddar, A., Bouzekri, H., Babes, B., & Afghoul, H. (2016). Experimental enhancement of fuzzy fractional order PI+I controller of grid connected variable speed wind energy conversion system. Energy Conversion and Management, 123, 569–580. doi:10.1016/j.enconman.2016.06.070.