f Design, Fabrication and Performance Analysis of a Compact Unidirectional Quasi-Yagi Antenna for High Gain and High Directivity at 6.2 GHz
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Design, Fabrication and Performance Analysis of a Compact Unidirectional Quasi-Yagi Antenna for High Gain and High Directivity at 6.2 GHz

Author(s): Nahid A Jahan*, Ziaul Zafar and Md. Asif Hossain

Publisher : FOREX Publication

Published : 20 June 2024

e-ISSN : 2347-470X

Page(s) : 581-589




Nahid A Jahan*, Department of Electrical and Electronic Engineering, Southeast University, Bangladesh; Email: nahid.jahan@seu.edu.bd

Ziaul Zafar, Department of Electrical and Electronic Engineering, University of Dhaka, Bangladesh; Email: zafarziaul@gmail.com

Md. Asif Hossain, Department of Electrical and Electronic Engineering, Southeast University, Bangladesh; Email: asif.hossain@seu.edu.bd

    [1] V. G. Kasabegoudar and S. Shirabadagi, “Quasi Yagi antennas for the state of the art applications,” Int. J. Eng. Trends Technol., vol. 70, no. 4, pp. 1–14, 2022.
    [2] Y. Chen, J. Shi, K. Xu, L. Lin, and L. Wang, “A Compact Wideband Quasi-Yagi Antenna for Millimeter-Wave Communication,” IEEE Antennas Wirel. Propag. Lett., 2023.
    [3] A. Kumar, E. Easha, D. Sarkar, and G. Banerjee, “A compact quasi-Yagi antenna for FMCW radar-on-chip-based through-wall imaging,” Int. J. Microw. Wirel. Technol., pp. 1–13, 2023.
    [4] M. A. Haque, M. A. Zakariya, N. S. S. Singh, M. A. Rahman, and L. C. Paul, “Parametric study of a dual-band quasi-Yagi antenna for LTE application,” Bull. Electr. Eng. Informatics, vol. 12, no. 3, pp. 1513–1522, 2023.
    [5] M. Gupta and H. Kumar, “Compact, Broadband and High Gain Uniplanar Quasi-Yagi Microstrip Antenna for End-Fire Radiation,” IETE J. Res., pp. 1–10, 2023.
    [6] H. Yagi, “Beam Transmission of Ultra Short Waves,” Proc. Inst. Radio Eng., vol. 16, no. 6, pp. 715–740, 1928, doi: 10.1109/JRPROC.1928.221464.
    [7] K. Jiang, Q. G. Guo, and K. M. Huang, “Design of a wideband quasi-Yagi microstrip antenna with bowtie active elements,” in 2010 International Conference on Microwave and Millimeter Wave Technology, 2010, pp. 1122–1124, doi: 10.1109/ICMMT.2010.5525084.
    [8] J. Huang and A. C. Densmore, “Microstrip Yagi array antenna for mobile satellite vehicle application,” IEEE Trans. Antennas Propag., vol. 39, no. 7, pp. 1024–1030, 1991, doi: 10.1109/8.86924.
    [9] T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194-2196(2), Nov. 1998, [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19981583.
    [10] Y. Ding, Y. C. Jiao, P. Fei, B. Li, and Q. T. Zhang, “Design of a Multiband Quasi-Yagi-Type Antenna With CPW-to-CPS Transition,” IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 1120–1123, 2011, doi: 10.1109/LAWP.2011.2170950.
    [11] S.-J. Wu, C.-H. Kang, K.-H. Chen, and J.-H. Tarng, “A Multiband Quasi-Yagi Type Antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 593–596, 2010, doi: 10.1109/TAP.2010.2041522.
    [12] H.-D. Lu, L.-M. Si, and Y. Liu, “Compact planar microstrip-fed quasi-Yagi antenna,” Electron. Lett., vol. 48, no. 3, pp. 140–141, 2012.
    [13] K. Quzwain, A. Ismail, and A. Sali, “Compact High Gain and Wideband Octagon Microstrip Yagi Antenna,” Electromagnetics, vol. 36, no. 8, pp. 524–533, Nov. 2016, doi: 10.1080/02726343.2016.1236060.
    [14] Y. Liu, H. Liu, M. Wei, and S. Gong, “A Novel Slot Yagi-Like Multilayered Antenna With High Gain and Large Bandwidth,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 790–793, 2014, doi: 10.1109/LAWP.2014.2318313.
    [15] Z. Wang, X. Liu, Y. Yin, and J. Wu, “Dual-element folded dipole design for broadband multilayered Yagi antenna for 2G/3G/LTE applications,” Electron. Lett., vol. 50, no. 4, pp. 242–244, Feb. 2014, doi: https://doi.org/10.1049/el.2013.4146.
    [16] Z. Hu, Z. Shen, W. Wu, and J. Lu, “Low-Profile Top-Hat Monopole Yagi Antenna for End-Fire Radiation,” IEEE Trans. Antennas Propag., vol. 63, no. 7, pp. 2851–2857, 2015, doi: 10.1109/TAP.2015.2427853.
    [17] B.-Y. Park, M.-H. Jeong, and S.-O. Park, “A Miniaturized Microstrip-to-Coplanar-Strip Transition Loaded with Artificial Transmission Lines and 2.4-GHz Antenna Application,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 1486–1489, 2014, doi: 10.1109/LAWP.2014.2341552.
    [18] Y. He and C. Liu, “Comments on ‘Planar Artificial Transmission Lines Loading for Miniturization of RFID Printed Quasi-Yagi Antenna,’” IEEE Antennas Wirel. Propag. Lett., vol. 13, p. 1815, 2014, doi: 10.1109/LAWP.2014.2387991.
    [19] H.-C. Huang, J.-C. Lu, and P. Hsu, “On the size reduction of planar Yagi-Uda antenna using parabolic reflector,” in 2015 Asia-Pacific Microwave Conference (APMC), 2015, vol. 1, pp. 1–3, doi: 10.1109/APMC.2015.7411775.
    [20] I. Park, “Broadband CPS-fed Yagi-Uda antenna,” Electron. Lett., vol. 45, no. 24, pp. 1207-1209(2), Nov. 2009, [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el.2009.1330.
    [21] K. Dalal, T. Singh, and P. K. Singh, “A Low Profile Ultra-Wideband Antenna Design with Reconfigurable Notch-Bands for Wideband and Narrowband Applications,” Wirel. Pers. Commun., vol. 125, no. 2, pp. 1405–1423, 2022, doi: 10.1007/s11277-022-09611-3.
    [22] K. Patidar, K. K. Yadav, and D. Yadav, “Performance Analysis of Substrate Integrated Waveguide with different Dielectric Materials for X-band applications,” in 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 2020, pp. 1–4, doi: 10.1109/IEMENTech51367.2020.9270069.
    [23] R. M. Atta, “Effect of applying air pressure during wet etching of micro copper PCB tracks with ferric chloride,” Int. J. Mater. Res., vol. 113, no. 9, pp. 795–808, 2022.
    [24] H. R. Chowdhury, M. S. Hassan, and A. Ahmed, “Analysis of path loss characteristics in body area network for different physical structures,” in 2016 9th International Conference on Electrical and Computer Engineering (ICECE), 2016, pp. 299–302.
    [25] L. Sun, M. He, J. Hu, Y. Zhu, and H. Chen, “A butterfly-shaped wideband microstrip patch antenna for wireless communication,” Int. J. Antennas Propag., vol. 2015, 2015.
    [26] M. N. Srifi, M. Meloui, and M. Essaaidi, “Rectangular slotted patch antenna for 5-6GHz applications,” Int. J. Microw. Opt. Technol., vol. 5, no. 2, pp. 52–57, 2010.
    [27] A. P. S. Pharwaha and S. Rani, “Simulation and design of broad-band slot antenna for wireless applications,” in Proceedings of the world congress on Engineering, 2011, vol. 2.
    [28] S. Kaur, P. Sharma, and M. Singh, “Design of Tri Band P Shaped Microstrip Patch Antenna,” Int. J. Adv. Eng. Res. Dev., vol. 4, no. 10, 2017.
    [29] B. Huang, M. Li, W. Lin, J. Zhang, G. Zhang, and F. Wu, “A Compact Slotted Patch Hybrid-Mode Antenna for Sub-6 GHz Communication,” Int. J. Antennas Propag., vol. 2020, p. 8262361, 2020, doi: 10.1155/2020/8262361.

Nahid A Jahan, Ziaul Zafar and Md. Asif Hossain (2024), Design, Fabrication and Performance Analysis of a Compact Unidirectional Quasi-Yagi Antenna for High Gain and High Directivity at 6.2 GHz. IJEER 12(2), 581-589. DOI: 10.37391/IJEER-120233.