Case Study |
The potential of rice husks for electrical energy generation in Cambodia
Author(s): Sophea Nam*, Vanna Torn , Chivon Choeung and Horchhong Cheng
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 2
Publisher : FOREX Publication
Published : 25 June 2024
e-ISSN : 2347-470X
Page(s) : 611-616
Abstract
The purpose of this study was to ascertain the electrical potential of rice husk as a viable fuel source for electricity generation in Cambodia. The rice husk potential in Cambodia for each year was determined by analyzing statistical data on rice output from 2000 to 2021. The results indicate a significant 120% improvement in the capacity of rice husk to be transformed into power during a span of 22 years. On average, about 5.4% per year. Annual husk potential was calculated using 2019 statistical data. In 2019, there is a potential of about 1,741 million tons of husks, equivalent to about 864,408 tons of coal, which provides electricity and a potential of about 6,483 GWh and 740,075 MW. This potential can be turned into fuel to use rice husk as a fuel to convert into local electricity and contribute to reducing coal consumption and negative environmental impacts in Cambodia. Despite the carbon emissions associated with rice husk, its overall positive impact surpasses that of coal-fired power plants. In this paper, however, the economic analysis of rice husk for electricity generation is not studied.
Keywords: Rice husk
, fuel
, energy potential
, electrical energy
, power generation
.
Sophea Nam*, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: namsophea@npic.edu.kh
Vanna Torn , Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: vanna.t@kkumail.com
Chivon Choeung, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: choeungchivon@npic.edu.kh
Horchhong Cheng, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: horchhong@gmail.com
-
[1] Https://Www.Edc.Com.Kh/Annually_page/annuallyReport Available online: https://www.edc.com.kh/annually_page/annuallyReport (accessed on 10 April 2024).
-
[2] Kapur, T.; Kandpal, T.C.; Garg, H.P. Electricity Generation from Rice Husk in Indian Rice Mills: Potential and Financial Viability. Biomass and Bioenergy 1996, 10, 393–403, doi:10.1016/0961-9534(95)00116-6.
-
[3] Anshar, M.; Ani, F.N.; Kader, A.S. Combustion Characteristics Modeling of Rice Husk as Fuel for Power Plant in Indonesia. AMM 2014, 695, 815–819, doi:10.4028/www.scientific.net/AMM.695.815.
-
[4] Roy, P.C. Role of Biomass Energy for Sustainable Development of Rural India: Case Studies. International Journal of Emerging Technology and Advanced Engineering 2013, 3, 577–582.
-
[5] Shafie, S.M.; T.M.I.Mahlia; Masjuki, H.H.; Rismanchi, B. Life Cycle Assessment (LCA) of Electricity Generation from Rice Husk in Malaysia. Energy Procedia 2012, 14, 499–504, doi:10.1016/j.egypro.2011.12.965.
-
[6] Gómez, A.; Zubizarreta, J.; Rodrigues, M.; Dopazo, C.; Fueyo, N. An Estimation of the Energy Potential of Agro-Industrial Residues in Spain. Resources, Conservation and Recycling 2010, 54, 972–984, doi:10.1016/j.resconrec.2010.02.004.
-
[7] General Population Census of the Kingdom of Cambodia 2019; National Institute of Statistics, 2019.
-
[8] 018-026 Available online: http://elibrary.maff.gov.kh/book/6098de8747980 (accessed on 3 May 2024).
-
[9] Dear, R.K. Estimation of Power Generation Potential of Agricultural Based Biomass Species. MTech, 2007.
-
[10] Maiti, S.; Dey, S.; Purakayastha, S.; Ghosh, B. Physical and Thermochemical Characterization of Rice Husk Char as a Potential Biomass Energy Source. Bioresource Technology 2006, 97, 2065–2070, doi:10.1016/j.biortech.2005.10.005.
-
[11] Patel, S.K.; Kumar, M. Electrical Power Generation Potential of Paddy Waste. 2010.
-
[12] Cambodia Production Available online: https://ipad.fas.usda.gov/countrysummary/default.aspx?id=CB (accessed on 30 May 2024).
-
[13] Provisional Population Census 2019_English_FINAL.Pdf.
-
[14] Di Blasi, C.; Tanzi, V.; Lanzetta, M. A Study on the Production of Agricultural Residues in Italy. Biomass and Bioenergy 1997, 12, 321–331, doi:10.1016/S0961-9534(96)00073-6.
-
[15] Daifullah, A.A.M.; Girgis, B.S.; Gad, H.M.H. Utilization of Agro-Residues (Rice Husk) in Small Waste Water Treatment Plans. Materials Letters 2003, 57, 1723–1731, doi:10.1016/S0167-577X(02)01058-3.
-
[16] Dasappa, S. Potential of Biomass Energy for Electricity Generation in Sub-Saharan Africa. Energy for Sustainable Development 2011, 15, 203–213, doi:10.1016/j.esd.2011.07.006.
-
[17] Hiloidhari, M.; Baruah, D.C. Crop Residue Biomass for Decentralized Electrical Power Generation in Rural Areas (Part 1): Investigation of Spatial Availability. Renewable and Sustainable Energy Reviews 2011, 15, 1885–1892, doi:10.1016/j.rser.2010.12.010.
-
[18] Lim, J.S.; Abdul Manan, Z.; Wan Alwi, S.R.; Hashim, H. A Review on Utilisation of Biomass from Rice Industry as a Source of Renewable Energy. Renewable and Sustainable Energy Reviews 2012, 16, 3084–3094, doi:10.1016/j.rser.2012.02.051.
-
[19] Hosen, Md.E.; Siddik, Md.N.A.; Miah, Md.F.; Kabiraj, S. Biomass Energy for Sustainable Development: Evidence from Asian Countries. Environ Dev Sustain 2022, 26, 3617–3637, doi:10.1007/s10668-022-02850-1.
-
[20] Kuprianov, V.I.; Janvijitsakul, K.; Permchart, W. Co-Firing of Sugar Cane Bagasse with Rice Husk in a Conical Fluidized-Bed Combustor. Fuel 2006, 85, 434–442, doi:10.1016/j.fuel.2005.08.013.
-
[21] Rozainee, M.; Ngo, S.P.; Salema, A.A.; Tan, K.G. Computational Fluid Dynamics Modeling of Rice Husk Combustion in a Fluidised Bed Combustor. Powder Technology 2010, 203, 331–347, doi:10.1016/j.powtec.2010.05.026.
-
[22] Sadhu, D.; Ocácia, G.; Zen, L. Prospect of an Environmentally Balanced Energy System from Rice Husks and Wind. Renewable Energy 1993, 3, 885–889, doi:10.1016/0960-1481(93)90046-J.
-
[23] Butt, S.; Hartmann, I.; Lenz, V. Bioenergy Potential and Consumption in Pakistan. Biomass and Bioenergy 2013, 58, 379–389, doi:10.1016/j.biombioe.2013.08.009.
-
[24] Martínez, J.D.; Pineda, T.; López, J.P.; Betancur, M. Assessment of the Rice Husk Lean-Combustion in a Bubbling Fluidized Bed for the Production of Amorphous Silica-Rich Ash. Energy 2011, 36, 3846–3854, doi:10.1016/j.energy.2010.07.031.
-
[25] Madhiyanon, T.; Sathitruangsak, P.; Soponronnarit, S. Co-Combustion of Rice Husk with Coal in a Cyclonic Fluidized-Bed Combustor (ψ-FBC). Fuel 2009, 88, 132–138, doi:10.1016/j.fuel.2008.08.008.
-
[26] Chen, W.-H.; Wu, J.-S. An Evaluation on Rice Husks and Pulverized Coal Blends Using a Drop Tube Furnace and a Thermogravimetric Analyzer for Application to a Blast Furnace. Energy 2009, 34, 1458–1466, doi:10.1016/j.energy.2009.06.033.
-
[27] Kwong, P.C.W.; Chao, C.Y.H.; Wang, J.H.; Cheung, C.W.; Kendall, G. Co-Combustion Performance of Coal with Rice Husks and Bamboo. Atmospheric Environment 2007, 41, 7462–7472, doi:10.1016/j.atmosenv.2007.05.040.
-
[28] Yoon, S.J.; Son, Y.-I.; Kim, Y.-K.; Lee, J.-G. Gasification and Power Generation Characteristics of Rice Husk and Rice Husk Pellet Using a Downdraft Fixed-Bed Gasifier. Renewable Energy 2012, 42, 163–167, doi:10.1016/j.renene.2011.08.028.
-
[29] Quispe, I.; Navia, R.; Kahhat, R. Energy Potential from Rice Husk through Direct Combustion and Fast Pyrolysis: A Review. Waste Management 2017, 59, 200–210, doi:10.1016/j.wasman.2016.10.001.