f Enhancing Smart Grid Stability: Data-Driven Predictive Modeling in Distribution Systems
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Enhancing Smart Grid Stability: Data-Driven Predictive Modeling in Distribution Systems

Author(s): Arivoli Sundaramurthy*, Karthikeyan Ramasamy, Durgadevi Velusamy and Chitra Vaithiyalingam

Publisher : FOREX Publication

Published : 25 June 2024

e-ISSN : 2347-470X

Page(s) : 623-631




Arivoli Sundaramurthy*, Arivoli Sundaramurthy, Department of Biomedical Engineering, KSR Institute for Engineering and Technology, Tamil Nadu ,637215 India; Email: sarivoliapeee@gmail.com

Karthikeyan Ramasamy, Karthikeyan Ramasamy ,Department of Electrical and Electronics Engineering, M.Kumarasamy College of Engineering, Karur, Tamil Nadu ,639113 India; Email: papkarthik@gmail.com

Durgadevi Velusamy, Durgadevi VelusamyDepartment of Information Technology, SSN College of Engineering, Chennai, Tamil Nadu ,603110 India; Email: mvdurgadevi@gmail.com

Chitra Vaithiyalingam, Chitra Vaithiyalingam, Department of Mathematics, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India; Email: chitra@psgitech.ac.in

    [1] D.Heide, L.von Bremen, M.Greiner, C. Hoffmann, M.Speckmann, & S.Bofinger, (2010). Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renewable Energy, 35(11). https://doi.org/10.1016/j.renene.2010.03.012.
    [2] D. Butler, “Super savers: Meters to manage the future.” Nature, vol. 445, no. 7128, pp. 586-588, 2007, doi: 10.1038/445586a.
    [3] M. H. Albadi and E. F. El-Saadany, “A summary of demand response in electricity markets,” Electric Power Systems Research, vol. 78, no. 11. pp. 1989–1996, Nov. 2008, doi: 10.1016/j.epsr.2008.04.002.
    [4] P. Palensky and D. Dietrich, “Demand side management: Demand response, intelligent energy systems, and smart loads,” IEEE Trans. Ind. Informatics, vol. 7, no. 3, pp. 381–388, Aug. 2011, doi: 10.1109/TII.2011.2158841.
    [5] T. Ackermann, G. Andersson, and L. Soder, “Distributed generation: a definition.” Electric Power Systems Research, vol. 57, no. 3, pp. 195-204, 2001, doi: 10.1016/s0378-7796(01)00101-8.
    [6] G. N. Ericsson, “Cyber security and power system communication essential parts of a smart grid infrastructure,” IEEE Trans. Power Deliv., vol. 25, no. 3, pp. 1501–1507, Jul. 2010, doi: 10.1109/TPWRD.2010.2046654.
    [7] J. Liu, Y. Xiao, S. Li, W. Liang, and C. L. P. Chen, “Cyber security and privacy issues in smart grids,” IEEE Commun. Surv. Tutorials, vol. 14, no. 4, pp. 981–997, 2012, doi: 10.1109/SURV.2011.122111.00145.
    [8] B. Schafer, M. Matthiae, M. Timme, and D. Witthaut, “Decentral smart grid control,” New J. Phys., vol. 17, Jan. 2015, doi: 10.1088/1367-2630/17/1/015002.
    [9] B. Schafer, C. Grabow, S. Auer, J. Kurths, D. Witthaut, and M. Timme, “Taming instabilities in power grid networks by decentralized control,” Eur. Phys. J. Spec. Top., vol. 225, no. 3, pp. 569–582, May 2016, doi: 10.1140/epjst/e2015-50136-y.
    [10] V. Arzamasov, K. Bohm, and P. Jochem, “Towards Concise Models of Grid Stability.” 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2018, doi: 10.1109/smartgridcomm.2018.8587498.
    [11] P. Kofinas, A. I. Dounis, and G. A. Vouros, “Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids,” Appl. Energy, vol. 219, pp. 53–67, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.017.
    [12] Y. Tang, H. Cui, and Q. Wang, “Prediction model of the power system frequency using a cross-entropy ensemble algorithm,” Entropy, vol. 19, no. 10, Oct. 2017, doi: 10.3390/e19100552.
    [13] Y. Xu, Y. Dai, Z. Y. Dong, R. Zhang, and K. Meng, “Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems,” Neural Computing and Applications, vol. 22, no. 3–4. Springer London, pp. 501–508, Mar. 01, 2013, doi: 10.1007/s00521-011-0803-3.
    [14] B. Jayasekara and U. D. Annakkage, “Derivation of an accurate polynomial representation of the transient stability boundary,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1856–1863, Nov. 2006, doi: 10.1109/TPWRS.2006.881111.
    [15] J. D. Pinzon and D. G. Colome, “Real-time multi-state classification of short-term voltage stability based on multivariate time series machine learning,” Int. J. Electr. Power Energy Syst., vol. 108, pp. 402–414, Jun. 2019, doi: 10.1016/j.ijepes.2019.01.022.
    [16] A. K. Singh and M. Fozdar, “Event‐driven frequency and voltage stability predictive assessment and unified load shedding.” IET Generation, Transmission & Distribution, vol. 13, no. 19, pp. 4410-4420, 2019, doi: 10.1049/iet-gtd.2018.6750.
    [17] Wang, Q., Li, F., Tang, Y., & Xu, Y. (2019). Integrating Model-Driven and Data-Driven Methods for Power System Frequency Stability Assessment and Control. IEEE Transactions on Power Systems, 34(6), 4557–4568. https://doi.org/10.1109/TPWRS.2019.2919522.
    [18] Q. Wang, C. Zhang, L. Ying, Z. Yu, and Y. Tang, “Data inheritance–based updating method and its application in transient frequency prediction for a power system,” Int. Trans. Electr. Energy Syst., vol. 29, no. 6, Jun. 2019, doi: 10.1002/2050-7038.12022.
    [19] Q. Zhu, “A Deep End-to-End Model for Transient Stability Assessment With PMU Data.” IEEE Access, vol. 6, pp. 65474-65487, 2018, doi: 10.1109/access.2018.2872796.
    [20] Y. Zhang, Y. Xu, Z. Y. Dong, and R. Zhang, “A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment,” IEEE Trans. Ind. Informatics, vol. 15, no. 1, pp. 74–84, Jan. 2019, doi: 10.1109/TII.2018.2829818.
    [21] L. Zheng, “Deep belief network based nonlinear representation learning for transient stability assessment.” 2017 IEEE Power & Energy Society General Meeting, 2017, doi: 10.1109/pesgm.2017.8274126.
    [22] Y. Zhou, Q. Guo, H. Sun, Z. Yu, J. Wu, and L. Hao, “A novel data-driven approach for transient stability prediction of power systems considering the operational variability,” Int. J. Electr. Power Energy Syst., vol. 107, pp. 379–394, May 2019, doi: 10.1016/j.ijepes.2018.11.031.
    [23] L. Zhu, C. Lu, and Y. Sun, “Time Series Shapelet Classification Based Online Short-Term Voltage Stability Assessment,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1430–1439, Mar. 2016, doi: 10.1109/TPWRS.2015.2413895.
    [24] L. Zhu, C. Lu, Z. Y. Dong, and C. Hong, “Imbalance Learning Machine-Based Power System Short-Term Voltage Stability Assessment,” IEEE Trans. Ind. Informatics, vol. 13, no. 5, pp. 2533–2543, Oct. 2017, doi: 10.1109/TII.2017.2696534.
    [25] J. J. Q. Yu, A. Y. S. Lam, D. J. Hill, and V. O. K. Li, “Delay Aware Intelligent Transient Stability Assessment System.” IEEE Access, vol. 5, pp. 17230-17239, 2017, doi: 10.1109/access.2017.2746093.
    [26] J. J. Q. Yu, D. J. Hill, A. Y. S. Lam, J. Gu, and V. O. K. Li, “Intelligent Time-Adaptive Transient Stability Assessment System.” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1049-1058, 2018, doi: 10.1109/tpwrs.2017.2707501.
    [27] L. Zhu, D. J. Hill, and C. Lu, “Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction.” IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 2399-2411, 2020, doi: 10.1109/tpwrs.2019.2957377.
    [28] D. A. Wood, “Predicting Stability of a Decentralized Power Grid Linking Electricity Price Formulation to Grid Frequency Applying an Optimized Data-Matching Learning Network to Simulated Data.” Technology and Economics of Smart Grids and Sustainable Energy, vol. 5, no. 1, 2020, doi: 10.1007/s40866-019-0074-0.
    [29] Y. Li and Z. Yang, “Application of EOS-ELM With Binary Jaya-Based Feature Selection to Real-Time Transient Stability Assessment Using PMU Data.” IEEE Access, vol. 5, pp. 23092-23101, 2017, doi: 10.1109/access.2017.2765626.
    [30] T. Amraee and S. Ranjbar, “Transient instability prediction using decision tree technique,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3028–3037, 2013, doi: 10.1109/TPWRS.2013.2238684.
    [31] F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, and I. T. Fernando, “Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction Using Synchronized Measurements.” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1474-1483, 2011, doi: 10.1109/tpwrs.2010.2082575.
    [32] H.-Y. Su and T.-Y. Liu, “Enhanced-Online-Random-Forest Model for Static Voltage Stability Assessment Using Wide Area Measurements.” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6696-6704, 2018, doi: 10.1109/tpwrs.2018.2849717.
    [33] M. B. Gorzalczany, J. Piekoszewski, and F. Rudzinski, “A Modern Data-Mining Approach Based on Genetically Optimized Fuzzy Systems for Interpretable and Accurate Smart-Grid Stability Prediction.” Energies, vol. 13, no. 10, p. 2559, 2020, doi: 10.3390/en13102559.
    [34] A. K. Bashir, “Comparative analysis of machine learning algorithms for prediction of smart grid stability †.” International Transactions on Electrical Energy Systems, vol. 31, no. 9, 2021, doi: 10.1002/2050-7038.12706.
    [35] D. Moldovan and I. Salomie, “Detection of Sources of Instability in Smart Grids Using Machine Learning Techniques.” 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), 2019, doi: 10.1109/iccp48234.2019.8959649.
    [36] L. S. Moulin, A. P. Alves Da Silva, M. A. El-Sharkawi, and R. J. Marks, “Support vector machines for transient stability analysis of large-scale power systems,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 818–825, May 2004, doi: 10.1109/TPWRS.2004.826018.
    [37] J. McCalley, S. Wang, Q.-L. Zhao, G.-Z. Zhou, R. Treinen, and A. Papalexopoulos, “Security boundary visualization for systems operation.” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 940-947, 1997, doi: 10.1109/59.589783.
    [38] C. Kaygusuz, L. Babun, H. Aksu, and A. S. Uluagac, “Detection of Compromised Smart Grid Devices with Machine Learning and Convolution Techniques.” 2018 IEEE International Conference on Communications (ICC), 2018, doi: 10.1109/icc.2018.8423022.
    [39] Vadim Arzamasov, “Electrical Grid Stability Simulated Data Dataset- UCI Machine Learning Repository.” https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+Simulated+Data+ (accessed: Apr. 14, 2021).
    [40] V. Malbasa, C. Zheng, P.-C. Chen, T. Popovic, and M. Kezunovic, “Voltage Stability Prediction Using Active Machine Learning.” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3117-3124, 2017, doi: 10.1109/tsg.2017.2693394.
    [41] J. Karim, “Line Stability Analysis of Decentral Smart Grid Control(DSGC).” https://medium.com/analytics-vidhya/line-stability-analysis-of-the-decentral-smart-grid-control-d5ef7e94fe77 (accessed: Apr. 14, 2021).

Arivoli Sundaramurthy, Karthikeyan Ramasamy, Durgadevi Velusamy and Chitra Vaithiyalingam (2024), Enhancing Smart Grid Stability: Data-Driven Predictive Modeling in Distribution Systems. IJEER 12(2), 623-631. DOI: 10.37391/IJEER.120239.