f State Estimation of Radial Distribution Systems Based on Multiple Legendre Neural Networks
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

State Estimation of Radial Distribution Systems Based on Multiple Legendre Neural Networks

Author(s): Haider Hakim Sachit* and Kassim Al-Anbarri

Publisher : FOREX Publication

Published : 30 September 2024

e-ISSN : 2347-470X

Page(s) : 1109-1119




Haider Hakim Sachit*, Research scholar, EED, College of Engineering, Mustansiriyah University, Iraq; Email: haider.h.sachit@uomustansiriyah.edu.iq

Kassim Al-Anbarri, Asst. Prof., EED, College of Engineering, Mustansiriyah University, Iraq; Email: alanbarri@uomustansiriyah.edu.iq

    [1] Alsac, O., Vempati, N., Stott, B., and Monticelli, A. Generalized state estimation. IEEE Transactions on Power Systems, 1998, vol. 13, no. 3, pp. 1069-1075. doi: 10.1109/59.709101.
    [2] Abu, J.; Mohammed H. A.; Trevor J. H.; A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction, Journal of Network and Computer Applications, 2022, 200.
    [3] Jabr, R. A.; Pal, B. C.; Singh, R. Choice of Estimator for Distribution System State Estimation. IET Generation, Transmission & Distribution, 2009, vol. 3, no. 7, pp. 666–678. doi 10.1049/iet-gtd.2008.0485.
    [4] Lu, C. N.; Teng, J. H.; Liu, W.-H. E. Distribution System State Estimation. IEEE Transactions on Power Systems, 1995, vol. 10, no. 1, pp. 229–240. doi 10.1109/59.373946.
    [5] Lin, W.-M.; Teng, J.-H. Distribution Fast Decoupled State Estimation by Measurement Pairing. IEE Proceedings - Generation, Transmission and Distribution, 1996, vol. 143, no. 1, p. 43. doi: 10.1049/ip-gtd:19960049.
    [6] Lin, W.-M.; Teng, J.-H.; Chen, S.-J. A Highly Efficient Algorithm in Treating Current Measurements for the Branch-Current-Based Distribution State Estimation. IEEE Transactions on Power Delivery, 2001, vol. 16, no. 3, pp. 433–439. doi: 10.1109/61.924823.
    [7] Deng, Y.; He, Y.; Zhang, B. A Branch-Estimation-Based State Estimation Method for Radial Distribution Systems. IEEE Transactions on Power Delivery, 2002, vol. 17, no. 4, pp. 1057–1062. doi: 10.1109/TPWRD.2002.803800.
    [8] Teng, J.-H. Using Voltage Measurements to Improve the Results of Branch-Current-Based State Estimators for Distribution Systems. IEE Proceedings - Generation, Transmission and Distribution, 2002, vol. 149, no. 6, p. 667. doi: 10.1049/ip-gtd:20020645.
    [9] Haughton, D. A.; Heydt, A. Linear State Estimation Formulation for Smart Distribution Systems. IEEE Transactions on Power Systems, 2013, vol. 28, no. 2, pp. 1187–1195. doi: 10.1109/TPWRS.2012.2212921.
    [10] Júnior, M. M. F.; Almeida, M. A. D.; Cruz, M. C. S.; Monteiro, R. V. F.; Oliveira, A. B. A. A Three-Phase Algorithm for State Estimation in Power Distribution Feeders Based on the Powers Summation Load Flow Method. Electric Power Systems Research, 2015, vol. 123, pp. 76–84. doi: 10.1016/j.epsr.2015.01.021.
    [11] Cano, J. M.; Arboleya, P.; Ahmed, M. R.; Mojumdar, M. R. R.; Orcajo, G. A. Improving Distribution System State Estimation with Synthetic Measurements. International Journal of Electrical Power & Energy Systems, 2021, vol. 129, article 106751. doi: 10.1016/j.ijepes.2020.106751.
    [12] Ranković, A.; Maksimović, B. M.; Sarić, A. T. A Three-Phase State Estimation in Active Distribution Networks. International Journal of Electrical Power & Energy Systems, 2014, vol. 54, pp. 154–162. doi: 10.1016/j.ijepes.2013.07.001.
    [13] Naka, S.; Genji, T.; Yura, T.; Fukuyama, Y. A Hybrid Particle Swarm Optimization for Distribution State Estimation. IEEE Transactions on Power Systems, 2003, vol. 18, no. 1, pp. 60–68. doi: 10.1109/TPWRS.2002.807051.
    [14] Hebling, G. M.; Massignan, J. A. D.; London Junior, J. B. A.; Camillo, M. H. M. Sparse and Numerically Stable Implementation of a Distribution System State Estimation Based on Multifrontal QR Factorization. Electric Power Systems Research, 2020, vol. 189, article 106734. doi: 10.1016/j.epsr.2020.106734.
    [15] Salehfar, H.; Zhao, R. A Neural Network Preestimation Filter for Bad-Data Detection and Identification in Power System State Estimation. Electric Power Systems Research, 1995, vol. 34, no. 2, pp. 127–134. doi: 10.1016/0378-7796(95)00966-7.
    [16] Manitsas, E.; Singh, R.; Pal, B. C.; Strbac, G. Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling. IEEE Transactions on Power Systems, 2012, vol. 27, no. 4, pp. 1888–1896. doi: 10.1109/TPWRS.2012.2187804.
    [17] Mestav, K. R.; Luengo-Rozas, J.; Tong, L. Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning. IEEE Transactions on Power Systems, 2019, vol. 34, no. 6, pp. 4910–4920. doi: 10.1109/TPWRS.2019.2919157.
    [18] Wang, L.; Zhou, Q.; Jin, S. Physics-Guided Deep Learning for Power System State Estimation. Journal of Modern Power Systems and Clean Energy, 2020, vol. 8, no. 4, pp. 607–615. doi: 10.35833/MPCE.2019.000565.
    [19] Zamzam, A. S.; Sidiropoulos, N. D. Physics-Aware Neural Networks for Distribution System State Estimation. IEEE Transactions on Power Systems, 2020, vol. 35, no. 6, pp. 4347–4356. doi: 10.1109/TPWRS.2020.2988352.
    [20] Zhang, L.; Wang, G.; Giannakis, G. B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 15, pp. 4069–4077. doi: 10.1109/TSP.2019.2926023.
    [21] Karnin, E. D. A Simple Procedure for Pruning Back-Propagation Trained Neural Networks. IEEE Trans Neural Netw, 1990, vol. 1, no. 2, pp. 239–242. doi: 10.1109/72.80236.
    [22] Werbos, P. J. Backpropagation through Time: What It Does and How to Do It. Proceedings of the IEEE, 1990, vol. 78, no. 10, pp. 1550–1560. doi: 10.1109/5.58337.
    [23] Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. In Neural Networks for Perception; Elsevier, 1992; pp. 65–93. doi: 10.1016/B978-0-12-741252-8.50010-8.
    [24] Pao, Y.-H.; Phillips, S. M. The Functional Link Net and Learning Optimal Control. Neurocomputing, 1995, vol. 9, no. 2, pp. 149–164. doi: 10.1016/0925-2312(95)00066-F.
    [25] Mall, S.; Chakraverty, S. Application of Legendre Neural Network for Solving Ordinary Differential Equations. Appl Soft Comput, 2016, vol. 43, pp. 347–356. doi: 10.1016/j.asoc.2015.10.069.
    [26] Das, B. Rule Based Algorithm for Meter Placement and ANN Based Bus Voltage Estimation in Radial Power Distribution System. Electric Power Components and Systems, 2005, vol. 33, no. 4, pp. 449–462. doi: 10.1080/15325000590480288.
    [27] Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980, 2014. doi: 10.48550/arXiv.1412.6980.
    [28] Bouchekara, H. R. E. H.; Latreche, Y.; Naidu, K.; Mokhlis, H.; Dahalan, W. M.; Javaid, M. S. Comprehensive Review of Radial Distribution Test Systems for Power System Distribution Education and Research. Resource-Efficient Technologies, 2019, Issue 3, pp. 1–12. doi: 10.18799/24056537/2019/3/196.

Haider Hakim Sachit and Kassim Al-Anbarri (2024), State Estimation of Radial Distribution Systems Based on Multiple Legendre Neural Networks. IJEER 12(3), 1109-1119. DOI: 10.37391/IJEER.120347.