Research Article |
State Estimation of Radial Distribution Systems Based on Multiple Legendre Neural Networks
Author(s): Haider Hakim Sachit* and Kassim Al-Anbarri
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 3
Publisher : FOREX Publication
Published : 30 September 2024
e-ISSN : 2347-470X
Page(s) : 1109-1119
Abstract
The conventional weighted least square (WLS) method is the most effective technique used in the state estimation of high voltage transmission system. Unfortunately, the application of WLS in radial distribution network encounter difficulties due to the inherent characteristics of these systems, such as the low measurement redundancy and high r/x ratio of the distribution systems. Given the structure of bulky systems that require a bulky number of measurements, the use of artificial neural networks is considered an effective alternative to estimate these values using a lesser number of measurements than conventional techniques. Due to state estimation based on ANN technique, the time-consuming gain matrix manipulation and pseudo measurements required in the conventional WLS method are no longer necessary. The efficiency of deep learning neural networks such as multi-layer perceptron (MLP) and Legendre neural network (LeNN) depends on the position of the measurements and the number of neural networks applied. Determining the applicable number of neural networks to ensure high estimation accuracy plays an important role in the estimation process. This aspect is addressed in this study, where multiple neural networks are used to improve performance compared to a single neural network. The results obtained indicate that determining the applicable number of neural networks depends on several factors such as the position of the measurements and the diversity of the data. The application of LeNN on state estimation of a 69-bus radial distribution network is used as an illustrative example to explain the distinctive feature of the proposed technique.
Keywords: State estimation
, radial distribution system
, multi-layer perceptron (MLP)
, Legendre neural network (LeNN)
, multiple neural networks
.
Haider Hakim Sachit*, Research scholar, EED, College of Engineering, Mustansiriyah University, Iraq; Email: haider.h.sachit@uomustansiriyah.edu.iq
Kassim Al-Anbarri, Asst. Prof., EED, College of Engineering, Mustansiriyah University, Iraq; Email: alanbarri@uomustansiriyah.edu.iq
-
[1] Alsac, O., Vempati, N., Stott, B., and Monticelli, A. Generalized state estimation. IEEE Transactions on Power Systems, 1998, vol. 13, no. 3, pp. 1069-1075. doi: 10.1109/59.709101.
-
[2] Abu, J.; Mohammed H. A.; Trevor J. H.; A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction, Journal of Network and Computer Applications, 2022, 200.
-
[3] Jabr, R. A.; Pal, B. C.; Singh, R. Choice of Estimator for Distribution System State Estimation. IET Generation, Transmission & Distribution, 2009, vol. 3, no. 7, pp. 666–678. doi 10.1049/iet-gtd.2008.0485.
-
[4] Lu, C. N.; Teng, J. H.; Liu, W.-H. E. Distribution System State Estimation. IEEE Transactions on Power Systems, 1995, vol. 10, no. 1, pp. 229–240. doi 10.1109/59.373946.
-
[5] Lin, W.-M.; Teng, J.-H. Distribution Fast Decoupled State Estimation by Measurement Pairing. IEE Proceedings - Generation, Transmission and Distribution, 1996, vol. 143, no. 1, p. 43. doi: 10.1049/ip-gtd:19960049.
-
[6] Lin, W.-M.; Teng, J.-H.; Chen, S.-J. A Highly Efficient Algorithm in Treating Current Measurements for the Branch-Current-Based Distribution State Estimation. IEEE Transactions on Power Delivery, 2001, vol. 16, no. 3, pp. 433–439. doi: 10.1109/61.924823.
-
[7] Deng, Y.; He, Y.; Zhang, B. A Branch-Estimation-Based State Estimation Method for Radial Distribution Systems. IEEE Transactions on Power Delivery, 2002, vol. 17, no. 4, pp. 1057–1062. doi: 10.1109/TPWRD.2002.803800.
-
[8] Teng, J.-H. Using Voltage Measurements to Improve the Results of Branch-Current-Based State Estimators for Distribution Systems. IEE Proceedings - Generation, Transmission and Distribution, 2002, vol. 149, no. 6, p. 667. doi: 10.1049/ip-gtd:20020645.
-
[9] Haughton, D. A.; Heydt, A. Linear State Estimation Formulation for Smart Distribution Systems. IEEE Transactions on Power Systems, 2013, vol. 28, no. 2, pp. 1187–1195. doi: 10.1109/TPWRS.2012.2212921.
-
[10] Júnior, M. M. F.; Almeida, M. A. D.; Cruz, M. C. S.; Monteiro, R. V. F.; Oliveira, A. B. A. A Three-Phase Algorithm for State Estimation in Power Distribution Feeders Based on the Powers Summation Load Flow Method. Electric Power Systems Research, 2015, vol. 123, pp. 76–84. doi: 10.1016/j.epsr.2015.01.021.
-
[11] Cano, J. M.; Arboleya, P.; Ahmed, M. R.; Mojumdar, M. R. R.; Orcajo, G. A. Improving Distribution System State Estimation with Synthetic Measurements. International Journal of Electrical Power & Energy Systems, 2021, vol. 129, article 106751. doi: 10.1016/j.ijepes.2020.106751.
-
[12] Ranković, A.; Maksimović, B. M.; Sarić, A. T. A Three-Phase State Estimation in Active Distribution Networks. International Journal of Electrical Power & Energy Systems, 2014, vol. 54, pp. 154–162. doi: 10.1016/j.ijepes.2013.07.001.
-
[13] Naka, S.; Genji, T.; Yura, T.; Fukuyama, Y. A Hybrid Particle Swarm Optimization for Distribution State Estimation. IEEE Transactions on Power Systems, 2003, vol. 18, no. 1, pp. 60–68. doi: 10.1109/TPWRS.2002.807051.
-
[14] Hebling, G. M.; Massignan, J. A. D.; London Junior, J. B. A.; Camillo, M. H. M. Sparse and Numerically Stable Implementation of a Distribution System State Estimation Based on Multifrontal QR Factorization. Electric Power Systems Research, 2020, vol. 189, article 106734. doi: 10.1016/j.epsr.2020.106734.
-
[15] Salehfar, H.; Zhao, R. A Neural Network Preestimation Filter for Bad-Data Detection and Identification in Power System State Estimation. Electric Power Systems Research, 1995, vol. 34, no. 2, pp. 127–134. doi: 10.1016/0378-7796(95)00966-7.
-
[16] Manitsas, E.; Singh, R.; Pal, B. C.; Strbac, G. Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling. IEEE Transactions on Power Systems, 2012, vol. 27, no. 4, pp. 1888–1896. doi: 10.1109/TPWRS.2012.2187804.
-
[17] Mestav, K. R.; Luengo-Rozas, J.; Tong, L. Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning. IEEE Transactions on Power Systems, 2019, vol. 34, no. 6, pp. 4910–4920. doi: 10.1109/TPWRS.2019.2919157.
-
[18] Wang, L.; Zhou, Q.; Jin, S. Physics-Guided Deep Learning for Power System State Estimation. Journal of Modern Power Systems and Clean Energy, 2020, vol. 8, no. 4, pp. 607–615. doi: 10.35833/MPCE.2019.000565.
-
[19] Zamzam, A. S.; Sidiropoulos, N. D. Physics-Aware Neural Networks for Distribution System State Estimation. IEEE Transactions on Power Systems, 2020, vol. 35, no. 6, pp. 4347–4356. doi: 10.1109/TPWRS.2020.2988352.
-
[20] Zhang, L.; Wang, G.; Giannakis, G. B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 15, pp. 4069–4077. doi: 10.1109/TSP.2019.2926023.
-
[21] Karnin, E. D. A Simple Procedure for Pruning Back-Propagation Trained Neural Networks. IEEE Trans Neural Netw, 1990, vol. 1, no. 2, pp. 239–242. doi: 10.1109/72.80236.
-
[22] Werbos, P. J. Backpropagation through Time: What It Does and How to Do It. Proceedings of the IEEE, 1990, vol. 78, no. 10, pp. 1550–1560. doi: 10.1109/5.58337.
-
[23] Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. In Neural Networks for Perception; Elsevier, 1992; pp. 65–93. doi: 10.1016/B978-0-12-741252-8.50010-8.
-
[24] Pao, Y.-H.; Phillips, S. M. The Functional Link Net and Learning Optimal Control. Neurocomputing, 1995, vol. 9, no. 2, pp. 149–164. doi: 10.1016/0925-2312(95)00066-F.
-
[25] Mall, S.; Chakraverty, S. Application of Legendre Neural Network for Solving Ordinary Differential Equations. Appl Soft Comput, 2016, vol. 43, pp. 347–356. doi: 10.1016/j.asoc.2015.10.069.
-
[26] Das, B. Rule Based Algorithm for Meter Placement and ANN Based Bus Voltage Estimation in Radial Power Distribution System. Electric Power Components and Systems, 2005, vol. 33, no. 4, pp. 449–462. doi: 10.1080/15325000590480288.
-
[27] Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980, 2014. doi: 10.48550/arXiv.1412.6980.
-
[28] Bouchekara, H. R. E. H.; Latreche, Y.; Naidu, K.; Mokhlis, H.; Dahalan, W. M.; Javaid, M. S. Comprehensive Review of Radial Distribution Test Systems for Power System Distribution Education and Research. Resource-Efficient Technologies, 2019, Issue 3, pp. 1–12. doi: 10.18799/24056537/2019/3/196.