f Short Term Load Prediction based on LSTM Network for Iraqi Thermal Power Plant
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Short Term Load Prediction based on LSTM Network for Iraqi Thermal Power Plant

Author(s): Safa Abdulwahid, and Mahmoud-Reza Haghifam

Publisher : FOREX Publication

Published : 30 December 2024

e-ISSN : 2347-470X

Page(s) : 1461-1465




Safa Abdulwahid*, Department of Electrical Engineering, South of Tehran Branch, Islamic Azad University, Tehran, Iran; College of Engineering, Al Muthanna University, Al Muthanna, Iraq; Email: safa.abdulwahid@mu.edu.iq

Mahmoud-Reza Haghifam, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran; Email: haghifam@modares.ac.ir

    [1] Baliyan, A., Gaurav, K., & Mishra, S. K. A review of short term load forecasting using artificial neural network models. Procedia Computer Science, 2015, 48, 121-125.https://doi.org/10.1016/j.procs.2015.04.160.
    [2] Metaxiotis, K., Kagiannas, A., Askounis, D., & Psarras, J. Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher. Energy conversion and Management, 2003, 44(9), 1525-1534.https://doi.org/10.1016/S0196-8904(02)00148-6.
    [3] Walther, J., Spanier, D., Panten, N., & Abele, E. Very short-term load forecasting on factory level–A machine learning approach.. Procedia CIRP, 2019, 80, 705-710. https://doi.org/10.1016/j.procir.2019.01.060.
    [4] Din, G. M. U., & Marnerides, A. K. Short term power load forecasting using deep neural networks. In 2017 International conference on computing, networking and communications (ICNC). Silicon Valley, CA, USA, 2017, Jan. https://doi.org/10.1109/ICCNC.2017.7876196.
    [5] Sheshadri, G. S. Electrical load forecasting using time series analysis. In 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijiyapur, India, October 2020. https://doi.org/10.1109/B-HTC50970.2020.9297986.
    [6] Tarmanini, C., Sarma, N., Gezegin, C., & Ozgonenel, O. Short term load forecasting based on ARIMA and ANN approaches. Energy Reports 2023, 9, 550-557. https://doi.org/10.1016/j.egyr.2023.01.060.
    [7] Dhaval, B., and Deshpande, A. Short-term load forecasting with using multiple linear regression. International Journal of Electrical and Computer Engineering, 2020, 10(4), 3911-3917. https://doi.org/10.11591/ijece.v10i4.pp3911-3917.
    [8] Rao, M. S. S., Soman, S. A., Menezes, B. L., Chawande, P., Dipti, P., and Ghanshyam, T. An expert system approach to short-term load forecasting for Reliance Energy Limited Mumbai. In IEEE Power India Conference, New Delhi, India, 10 April 2006. https://doi.org/10.1109/POWERI.2006.1632604.
    [9] Ahmad, W., Ayub, N., Ali, T., Irfan, M., Awais, M., Shiraz, M., & Glowacz, A. Towards short term electricity load forecasting using improved support vector machine and extreme learning machine. Energies, 2020, 13(11), 2907. https://doi.org/10.3390/en13112907.
    [10] Çevik, H. H., & Çunkaş, M. Short-term load forecasting using fuzzy logic and ANFIS. Neural Computing and Applications, 2015, 26, 1355-1367. https://doi.org/10.1007/s00521-014-1809-4.
    [11] Arvanitidis, A. I., Bargiotas, D., Daskalopulu, A., Laitsos, V. M., & Tsoukalas, L. H. Enhanced short-term load forecasting using artificial neural networks. Energies, 2021, 14(22), 7788. https://doi.org/10.3390/en14227788.
    [12] Eskandari, H., Imani, M., & Moghaddam, M. P. Convolutional and recurrent neural network based model for short-term load forecasting. Electric Power Systems Research, 2021 195, 107173. https://doi.org/10.1016/j.epsr.2021.107173.
    [13] Wu, L., Kong, C., Hao, X., & Chen, W. A short‐term load forecasting method based on GRU‐CNN hybrid neural network model. Mathematical problems in engineering, 2020, (1), 1428104. https://doi.org/10.1155/2020/1428104.
    [14] Wang, Y., Gan, D., Sun, M., Zhang, N., Lu, Z., & Kang, C. Probabilistic individual load forecasting using pinball loss guided LSTM. Applied Energy, 2019, 235, pp 10-20. https://doi.org/10.1016/j.apenergy.2018.10.078.
    [15] Jiao, R., Zhang, T., Jiang, Y., & He, H. Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network. IEEE Access, 2018, 6, 59438-59448. https://doi.org/10.1109/ACCESS.2018.2873712.
    [16] Rafi, S. H., Deeba, S. R., & Hossain, E. A short-term load forecasting method using integrated CNN and LSTM network. IEEE Access, 2021, 9, pp 32436-32448. https://doi.org/10.1109/ACCESS.2021.3060654.
    [17] Venkatesan, S. Design an intrusion detection system based on feature selection using ML algorithms. Mathematical Statistician and Engineering Applications, 2023, 72(1), pp 702-710.
    [18] Velasco, L. C. P., Arnejo, K. A. S., & Macarat, J. S. S.. Performance analysis of artificial neural network models for hour-ahead electric load forecasting. Procedia Computer Science, 2022, 197, 16-24. https://doi.org/10.1016/j.procs.2021.12.113.

Safa Abdulwahid, Mahmoud-Reza Haghifam (2024), Short Term Load Prediction based on LSTM Network for Iraqi Thermal Power Plant. IJEER 12(4), 1461-1465. DOI: 10.37391/ijeer.120440.