Research Article |
Transfer Efficiency Enhancement using Double Negative Metamaterial in Wireless Power Transfer System
Author(s): Muhammad Sukriyllah Yusri1, Mohamad Harris Misran2, Maizatul Alice Meor Said3, Mohd Azlishah Othman4, Azahari Salleh5, Ridza Azri Ramlee6, Norbayah Yusop7, Shadia Suhaimi8, Mohd Zahid Idris9
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 1
Publisher : FOREX Publication
Published : 30 March 2025
e-ISSN : 2347-470X
Page(s) : 30-36
Abstract
Recently, there have been a lot of inventions and development in the field of wireless power transfer (WPT), which has increased the need for WPT systems with high power transfer efficiency (PTE) and longer transmission distances for end users. However, several of the presently accessible WPT systems exhibit restricted PTE and transmission range as a result of their utilization of inductive coupling. In addition, the PTE experiences a significant decline as the separation between the transmitter and receiver coils grows while employing this methodology. Hence, this study presents a proposal for the design of inductive WPT using metamaterials (MTMs) to improve PTE through the manipulation of magnetic field refraction. The efficiency and range of WPT can be enhanced by implementing MTMs between the transmit (Tx) and receive (Rx) coils. MTMs possess characteristics such as evanescent wave amplification and negative refractive properties, which hold promises for enhancing PTE. At separation of 70 mm, the use of negative permittivity MTM and double negative MTM results in a significant improvement in PTE, with an increase of 230% compared to the WPT system without MTM implementation. The purpose of this study is to offer a comprehensive understanding of the development of negative and double negative MTM-based WPT systems.
Keywords: wireless power transfer
, power transfer efficiency
, negative permeability
, negative permittivity
, double negative metamaterial
.
Muhammad Sukriyllah Yusri, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia; Email: M022120002@student.utem.edu.my
Mohamad Harris Misran, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;Email: harris@utem.edu.my
Maizatul Alice Meor Said, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;Email: maizatul@utem.edu.my
Mohd Azlishah Othman, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia; Email: azlishah@utem.edu.my
Azahari Salleh, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;Email: azahari@utem.edu.my
Ridza Azri Ramlee, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;Email: ridza@utem.edu.my
Norbayah Yusop,Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia;Email: norbayah@utem.edu.my
Shadia Suhaimi, Faculty of Business, Multimedia University, Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka MALAYSIA;Email: shadia.suhaimi@mmu.edu.my
Mohd Zahid Idris, Marine Engineering and ETO, Abu Dhabi Maritime Academy, 6th Streeet, Musaffah M-14, Abu Dhabi, United Arab Emirates;Email: mohammad.idris@adports.ae
-
[1] Mahesh A, Chokkalingam B, Mihet-Popa L. Inductive wireless power transfer charging for electric vehicles–a review. IEEE access. 2021; 9:137667-137713.
-
[2] Jandaliyeva A, Puchnin V, Shchelokova A. Volumetric wireless coils for breast MRI: A comparative analysis of metamaterial-inspired coil, Helmholtz coil, ceramic coil, and solenoid. Journal of Magnetic Resonance. 2024; 359:107627.
-
[3] Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth. IEEE Antennas and Wireless Propagation Letters. 2022;22(1):34-38.
-
[4] Adepoju W et al, Critical review of recent advancement in metamaterial design for wireless power transfer. IEEE Access. 2022; 10:42699-42726.
-
[5] Misran, M.H et al, A systematic optimization procedure of antenna miniaturization for efficient wireless energy transfer International Journal of Electrical and Computer Engineering, 2019, 9(4), pp. 3159–3166
-
[6] Mahmood AI, Gharghan SK, Eldosoky MA, Soliman AM. Near‐field wireless power transfer used in biomedical implants: A comprehensive review. IET Power Electronics. 2022;15(16):1936-1955.
-
[7] Rodenbeck CT et al, Microwave and millimeter wave power beaming. IEEE Journal of Microwaves. 2021;1(1):229-259.
-
[8] Rayas-Sánchez JE, Koziel S, Bandler JW. Advanced RF and microwave design optimization: A journey and a vision of future trends. IEEE Journal of Microwaves. 2021; 1(1):481-493.
-
[9] Rahulkumar J et al, A review on resonant inductive coupling pad design for wireless electric vehicle charging application. Energy Reports. 2023; 10:2047-2079.
-
[10] Amjad M, Farooq-i-Azam M, Ni Q, Dong M, Ansari EA. Wireless charging systems for electric vehicles. Renewable and Sustainable Energy Reviews. 2022; 167:112730.
-
[11] Shanmugam Y, Narayanamoorthi R, Vishnuram P, Bajaj M, AboRas KM, Thakur P. A systematic review of dynamic wireless charging system for electric transportation. IEEE Access. 2022; 10:133617-133642.
-
[12] Yusri MS, Misran MH, Yusop N, Said MA, Othman MA, Suhaimi S. Transfer efficiency enhancement on wireless power transfer using metamaterial. In2023 International Conference on Information Technology (ICIT) 2023 (pp. 724-729).
-
[13] Adepoju W et al, Critical review of recent advancement in metamaterial design for wireless power transfer. IEEE Access. 2022; 10:42699-42726.
-
[14] Kudaibergenova Z, Dautov K, Hashmi M. Compact metamaterial-integrated wireless information and power transfer system for low-power IoT sensors. Alexandria Engineering Journal. 2024; 92:176-184.
-
[15] Keshavarz R, Shariati N. Low profile metamaterial band-pass filter loaded with 4-turn complementary spiral resonator for WPT applications. In2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS) 2020 (pp. 1-4).
-
[16] Lee W, Yoon YK. Wireless power transfer systems using metamaterials: A review. IEEE Access. 2020; 8:147930-147947.
-
[17] Shaw T et al, An Efficient Wireless Power Transfer System using Transmission and Reflection Characteristics of Metamaterial. In2024 18th European Conference on Antennas and Propagation (EuCAP) 2024 (pp. 1-4).
-
[18] A. H. de Lima Ferreira, L. D. Ribeiro, and R. M. D. S. Batalha, “Wireless Power Transfer Through Coupled Magnetic Resonance with Conventional and Superconducting Metamaterials,” Brazilian Journal of Development, vol. 7, 2021
-
[19] D. Shan, H. Wang, K. Cao, and J. Zhang, “Wireless power transfer system with enhanced efficiency by using frequency reconfigurable metamaterial,” Scientific Reports, vol. 12, 2021.
-
[20] J. Suakaew and W. Pijitrojana, “A dynamic wireless power transfer using metamaterial-based transmitter,” Progress in Electromagnetics Research C, vol. 110, pp. 151-165, 2021