Research Article |
Impact on Breakdown Voltage for AlGaN Channel E-HEMT Device used with the DC Boost Converter Circuit
Author(s): Godwinraj D1, Godfrey D2, P. Sundararaman3 and V. Nandagopal4
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 1
Publisher : FOREX Publication
Published : 30 March 2025
e-ISSN : 2347-470X
Page(s) : 50-54
Abstract
In this paper, the impact on breakdown performance is demonstrated by the coupled operation of the E-mode AlGaN Channel HEMT for DC Boost Converter Circuit. CAD optimization of individual devices on the process and E-mode HEMT device level affects the circuit performance DC Boost Converter Circuit. The field plate length of Fp=2.7 µm results in the steady current at the voltage of VBV=790 V, whereas the field plate length of 3.6 µm results breakdown voltage of more than 1k volts. Circuit voltages at various nodes, Current in HEMT and SBD for switching cycle, and also the power dissipation is evaluated for two various doping concentrations 3E15(/cm3) and 9E15(/cm3). As a result, the dependency of power losses in the circuit on the physical parameters of the process stage is demonstrated.
Keywords: AlGaN Channel HEMT
, DC Boost converter
, Breakdown Voltage (VBV)
.
Godwinraj D, 1Department of Electronics and Communication Engineering, Amal Jyothi College of Engineering, Kerala, India;
Godfrey D, Department of Electronics and Communication Engineering, Dayananda Sagar University, Bengaluru, Karnataka, India;
P. Sundararaman, EECEC Department, GITAM University, Bangalore-South India;
V. Nandagopal, Department of Electrical and Electronics Engineering, School of Engineering, Mohan Babu University, Tirupati, Andhra Pradesh, India
-
[1] Motoki, K., Engel, Z., McCrone, T M., Chung, H., Matthews, C M., Lee, S., Marshall, E D., Ghosh, A., Tang, A., & Doolittle, W A. (2024). Improved crystallographic order of ScAlN/GaN heterostructures grown at low temperatures under metal rich surface conditions. American Institute of Physics, 135(13). https://doi.org/10.1063/5.0176344.
-
[2] Downing, M., Johnson, E B., Campbell, J C., & Dadey, A A. (2024). Design of a compact, radiation tolerant AlGaAs Geiger photodiode. Elsevier BV, 1061, 169160-169160. https://doi.org/10.1016/j.nima.2024.169160
-
[3] Yan, B., Pooja, B S., Chan, C H., & Chang, M F. (2024). Multiphysics Modeling on Photoconductive Antennas for Terahertz Applications. Cornell University. https://doi.org/10.48550/arxiv.2407.18465
-
[4] Lesecq, M., Frayssinet, É., Portail, M., Bah, M., Defrance, N., Ngo, T H., Daher, M A., Zieliński, M., Alquier, D., Jaeger, J D., & Cordier, Y. (2022). AlGaN/GaN High Electron Mobility Transistors Grown by MOVPE on 3C-SiC/Si(111) for RF Applications. Trans Tech Publications, 1062, 482-486. https://doi.org/10.4028/p-2wi7o8.
-
[5] Watanabe, I., Yamashita, Y., & Kasamatsu, A. (2020). Research and Development of GaN-based HEMTs for Millimeter- and Terahertz-Wave Wireless Communications. https://doi.org/10.1109/rfit49453.2020.9226221.
-
[6] Nanjo, Takuma & Imai, Akifumi & Suzuki, Yosuke & Abe, Yuji & Oishi, Toshiyuki & Suita, Muneyoshi & Yagyu, Eiji & Tokuda, Yasunori. (2013). AlGaN channel HEMT with extremely high breakdown voltage. IEEE Transactions on Electron Devices, 60. 1046-1053. 10.1109/TED.2012.2233742.
-
[7] X. Liu, J. Qin, J. Chen, J. Chen and H. Wang, "Novel Stacked Passivation Structure for AlGaN/GaN HEMTs on Silicon with High Johnson’s Figures of Merit," in IEEE Journal of the Electron Devices Society, vol. 11, pp. 130-134, 2023, doi: 10.1109/JEDS.2023.3241306.
-
[8] A. E. Islam et al., "Effect of High Temperature on the Performance of AlGaN/GaN T-Gate High-Electron Mobility Transistors with ~140-nm Gate Length," in IEEE Transactions on Electron Devices, vol. 71, no. 3, pp. 1805-1811, March 2024, doi: 10.1109/TED.2024.3353694.
-
[9] L. Arivazhagan, D. Nirmal, J. Ajayan, D. Godfrey, J. S. Rakkumar, S. Bhagya Lakshmi; Modeling of self-heating for AlGaN/GaN HEMT with thermal conductivity degradation effect. AIP Conf. Proc. 17 December 2019; 2201 (1): 020010. https://doi.org/10.1063/1.5141434
-
[10] A. Richelli, S. Comensoli, and Z. M. Kovacs-Vajna, “A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2701–2708, Jun. 2012.
-
[11] W.-C. Chen, C.-S. Wang, Y.-P. Su, Y.-H. Lee, C.-C. Lin, K.-H. Chen, and M.-J. Du, “Reduction of equivalent series inductor effect in delay ripple reshaped constant on-time control for a buck converter with multilayer ceramic capacitors,” IEEE Trans. Power Electronics, vol. 28, no. 5, pp. 2366–2376, May 2013.
-
[12] Lei, J., Liu, Y., Zhang, W., Yang, Z., Chen, Y., Wang, R., Chen, D., Xu, L., & Yu, J. (2023). An Analytical Model of Dynamic Power Losses in eGaN HEMT Power Devices. https://doi.org/10.20944/preprints202307.0804.v1
-
[13] Sanyal, I., Hu, T., Lee, Y., Lin, E J., & Chyi, J. (2019). Improved Electrical Degradation of AlInGaN/GaN HEMT by using Triethylgallium Grown GaN channel and Cap. https://doi.org/10.1109/iciprm.2019.8819108.