FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

PI Backstepping Control of a Surface-Mounted Permanent Magnet Synchronous Motors

Author(s): Sros Nhek1*, Sarot Srang2, Channareth Srun3 ,Chivon Choeung4aand Horchhong Cheng4b

Publisher : FOREX Publication

Published : 30 March 2025

e-ISSN : 2347-470X

Page(s) : 69-79




Sros Nhek*, Graduate School, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: srinu.bhukya@gmail.com

Sarot Srang, Industrial and Mechanical Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia; Email: srangsarot@itc.edu.kh

Channareth Srun, Faculty of Electronic, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: nareth16npic@gmail.com

Chivon Choeunga, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: choeungchivon@npic.edu.kh

Horchhong Chengb, Faculty of Electricity, National Polytechnic Institute of Cambodia, Phnom Penh, Cambodia; Email: horchhong@gmail.com

    [1] O. E. Özçiflikçi, M. Koç, S. Bahçeci, and S. Emiroğlu, “Overview of PMSM control strategies in electric vehicles: a review,” Int J Dyn Control, vol. 12, no. 6, pp. 2093–2107, Jun. 2024, doi: 10.1007/s40435-023-01314-2.
    [2] W.-S. Jung, H.-K. Lee, Y.-K. Lee, S.-M. Kim, J.-I. Lee, and J.-Y. Choi, “Analysis and Comparison of Permanent Magnet Synchronous Motors According to Rotor Type under the Same Design Specifications,” Energies (Basel), vol. 16, no. 3, p. 1306, Jan. 2023, doi: 10.3390/en16031306.
    [3] H. Wang, G. Zhang, and X. Liu, “Speed Control for PMSM with Fast-Terminal Super-Twisting Sliding Mode Controller via Extended State Disturbance Observer,” Applied Sciences, vol. 14, no. 18, p. 8126, Sep. 2024, doi: 10.3390/app14188126.
    [4] F. Mohd Zaihidee, S. Mekhilef, and M. Mubin, “Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review,” Energies (Basel), vol. 12, no. 9, p. 1669, May 2019, doi: 10.3390/en12091669.
    [5] R. I. Sudjoko, Hartono, and P. Iswahyudi, “Speed Control of Permanent Magnet Synchronous Motor Using Universal Bridge and PID Controller,” 2020, pp. 405–416. doi: 10.1007/978-981-15-4481-1_39.
    [6] S. Mandava and V. R. Nippatla, “Speed and current feedback loops control for permanent magnet synchronous motor using PID controller,” 2024, p. 040013. doi: 10.1063/5.0189794.
    [7] M. H. Mousavi, M. E. Karami, M. Ahmadi, P. Sharafi, and F. Veysi, “Robust speed controller design for permanent magnet synchronous motor based on gain-scheduled control method via LMI approach,” SN Appl Sci, vol. 2, no. 10, Oct. 2020, doi: 10.1007/s42452-020-03453-z.
    [8] Y. Lee, S. H. Lee, and C. C. Chung, “LPV H∞ Control with Disturbance Estimation for Permanent Magnet Synchronous Motors,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 488–497, Jan. 2018, doi: 10.1109/TIE.2017.2721911.
    [9] S. Nhek, S. Srang, C. Srun, S. Seven, R. Mao, and S. Chann, “Speed Control of Surface-Mounted PMSM Using the Gain-Schedule PI Control Method,” in 2024 7th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam: IEEE, Jul. 2024, pp. 62–66. doi: 10.1109/GTSD62346.2024.10674748.
    [10] F. A. Samman, C. Srun, and R. S. Sadjad, “Adaptive look-up table and interpolated PI gain scheduling control for voltage regulator using DC-DC converter,” International Journal of Innovative Computing, Information and Control, vol. 15, no. 2, pp. 489–501, Apr. 2019, doi: 10.24507/ijicic.15.02.489.
    [11] M. M. Alshbib, M. M. Elgbaily, I. M. Alsofyani, and F. Anayi, “Performance Enhancement of Direct Torque and Rotor Flux Control (DTRFC) of a Three-Phase Induction Motor over the Entire Speed Range: Experimental Validation,” Machines, vol. 11, no. 1, p. 22, Dec. 2022, doi: 10.3390/machines11010022.
    [12] M. Alshbib and S. Abdulkerim, “An Experimental and Analytical Investigation of the Direct Torque Control Method of a Three-Phase Induction Motor,” Journal of Electrical Engineering & Technology, vol. 18, no. 6, pp. 4367–4379, Nov. 2023, doi: 10.1007/s42835-023-01483-2.
    [13] F. Yang et al., “Improved direct torque control strategy for reducing torque ripple in switched reluctance motors,” Journal of Power Electronics, vol. 22, no. 4, pp. 603–613, Apr. 2022, doi: 10.1007/s43236-021-00380-z.
    [14] A. Nasr, C. Gu, X. Wang, G. Buticchi, S. Bozhko, and C. Gerada, “Torque-Performance Improvement for Direct Torque-Controlled PMSM Drives Based on Duty-Ratio Regulation,” IEEE Trans Power Electron, vol. 37, no. 1, pp. 749–760, Jan. 2022, doi: 10.1109/TPEL.2021.3093344.
    [15] A. K. Sahoo and R. K. Jena, “Reduction of torque ripple in induction motor-driven electric vehicle using optimized stator flux,” International Journal of Information Technology, vol. 15, no. 3, pp. 1333–1346, Mar. 2023, doi: 10.1007/s41870-023-01172-3.
    [16] A. Najem, A. Moutabir, A. Ouchatti, and M. El Haissouf, “Experimental Validation of the Generation of Direct and Quadratic Reference Currents by Combining the Ant Colony Optimization Algorithm and Sliding Mode Control in PMSM using the Process PIL,” International Journal of Robotics and Control Systems, vol. 4, no. 1, pp. 188–216, 2024, doi: 10.31763/ijrcs.v4i1.1286.
    [17] J. Yang, Z. Zhou, and J. Ji, “Nonlinear Integral Sliding Mode Control with Adaptive Extreme Learning Machine and Robust Control Term for Anti-External Disturbance Robotic Manipulator,” Arab J Sci Eng, vol. 48, no. 2, pp. 2375–2397, Feb. 2023, doi: 10.1007/s13369-022-07246-x.
    [18] H. Alnami, C. Pang, and Q. Wang, “A Novel Sliding Mode Control Method of Interior-Mounted PMSM,” in 2021 IEEE Texas Power and Energy Conference (TPEC), IEEE, Feb. 2021, pp. 1–6. doi: 10.1109/TPEC51183.2021.9384961.
    [19] A. Wang and S. Wei, “Sliding Mode Control for Permanent Magnet Synchronous Motor Drive Based on an Improved Exponential Reaching Law,” IEEE Access, vol. 7, pp. 146866–146875, 2019, doi: 10.1109/ACCESS.2019.2946349.
    [20] J. Michalski, M. Mrotek, M. Retinger, and P. Kozierski, “Adaptive Active Disturbance Rejection Control with Recursive Parameter Identification,” Electronics (Basel), vol. 13, no. 16, p. 3114, Aug. 2024, doi: 10.3390/electronics13163114.
    [21] Q. Zheng and Z. Gao, “Active disturbance rejection control: some recent experimental and industrial case studies,” Control Theory and Technology, vol. 16, no. 4, pp. 301–313, Nov. 2018, doi: 10.1007/s11768-018-8142-x.
    [22] X. Zhang, Y. Chen, and X. Sun, “Overview of Active Disturbance Rejection Control for Permanent Magnet Synchronous Motors,” Journal of Electrical Engineering & Technology, vol. 19, no. 3, pp. 1237–1255, Mar. 2024, doi: 10.1007/s42835-023-01710-w.
    [23] S. Shi, Z. Zeng, C. Zhao, L. Guo, and P. Chen, “Improved Active Disturbance Rejection Control (ADRC) with Extended State Filters,” Energies (Basel), vol. 15, no. 16, p. 5799, Aug. 2022, doi: 10.3390/en15165799.
    [24] Y. Lee, S.-H. Lee, and C. C. Chung, “LPV H∞ Control with Disturbance Estimation for Permanent Magnet Synchronous Motors,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 488–497, Jan. 2018, doi: 10.1109/TIE.2017.2721911.
    [25] Runze Cai, Ruixiang Zheng, Ming Liu, and Mian Li, “Robust control of PMSM using geometric model reduction and μ-synthesis,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, Oct. 2016, pp. 2885–2891. doi: 10.1109/IECON.2016.7793602.
    [26] S. Muthurajan, R. Loganathan, and R. R. Hemamalini, “Deep Reinforcement Learning Algorithm based PMSM Motor Control for Energy Management of Hybrid Electric Vehicles,” WSEAS TRANSACTIONS ON POWER SYSTEMS, vol. 18, pp. 18–25, Mar. 2023, doi: 10.37394/232016.2023.18.3.
    [27] Z. Song, J. Yang, X. Mei, T. Tao, and M. Xu, “Deep reinforcement learning for permanent magnet synchronous motor speed control systems,” Neural Comput Appl, vol. 33, no. 10, pp. 5409–5418, May 2021, doi: 10.1007/s00521-020-05352-1.
    [28] H. Echeikh, R. Trabelsi, A. Iqbal, N. Bianchi, and M. F. Mimouni, “Comparative study between the rotor flux-oriented control and non‐linear backstepping control of a five‐phase induction motor drive – an experimental validation,” IET Power Electronics, vol. 9, no. 13, pp. 2510–2521, Oct. 2016, doi: 10.1049/iet-pel.2015.0726.
    [29] M. Elmahfoud, B. Bossoufi, M. Taoussi, N. El Ouanjli, and A. Derouich, “Comparative Study Between Backstepping Adaptive and Field Oriented Controls for Doubly Fed Induction Motor,” European Journal of Electrical Engineering, vol. 22, no. 3, pp. 209–221, Jun. 2020, doi: 10.18280/ejee.220302.
    [30] A. Senhaji, M. Abdelouhab, A. Attar, and J. Bouchnaif, “Backstepping control of a permanent magnet synchronous motor,” Mater Today Proc, vol. 72, pp. 3730–3737, 2023, doi: 10.1016/j.matpr.2022.09.248.
    [31] M. Zamani, N. van de Wouw, and R. Majumdar, “Backstepping controller synthesis and characterizations of incremental stability,” Syst Control Lett, vol. 62, no. 10, pp. 949–962, Oct. 2013, doi: 10.1016/j.sysconle.2013.07.002.

Sros Nhek, Sarot Srang, Channareth Srun, Chivon Choeung, and Horchhong Cheng (2025), PI Backstepping Control of a Surface-Mounted Permanent Magnet Synchronous Motors . IJEER 13(1), 69-79. DOI: 10.37391/IJEER.130111.