Research Article |
Advanced Artificial Intelligence Techniques for Fault Distance Prediction in Optical Fibres
Author(s): Omar W. Albawab1*
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 1
Publisher : FOREX Publication
Published : 30 March 2025
e-ISSN : 2347-470X
Page(s) : 89-100
Abstract
It is necessary to estimate the value of distances to faults in the optical fibres for proper functioning and fault diagnosis of the fibre optic systems. This research proposes a comparison of result outcomes within numerous categories of machine learning algorithms such as Decision Tree, Random Forest, Gradient Boosting, XGBoost, LightGBM, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) on a new and emerging Fibre Optic Fault Distance Dataset. Given dataset contains sequenced OTDR signatures corresponding to different types as well as positions of the faults. The data then went through data pre-processing and was separated into training and test sets where models were trained from 80% of the data and tested on 20%. Model accuracy was also determined by the commonly used performance parameters including R-Square and Mean Squared Error (MSE). They found out that the Random Forest and LSTM models represented the highest R-Square values and the lowest MSE, thus proving the algorithm’s capability to forecast the fault distances. The greatest results were obtained by the proposed hybrid LSTM–RF model which combines the sequence processing and ensemble learning. These studies show that effective diagnosis of optical fibre faults using higher level and more complex techniques in machine learning is possible and specify directions on further study and application of this subject.
Keywords: Optical Fibre Fault Detection
, Machine Learning
, Fault Distance Prediction
, OTDR Signatures
, Hybrid Models
.
Omar W. Albawab*, College of Education for Human Sciences, University of Mosul, Mosul – Iraq
-
1. K. Xu, X. Li, Y. Tang, and C. Yuan, “Serial-parallel combined all optical sequence matching system using highly nonlinear fibres for photonic firewall,” Optik (Stuttg)., vol. 244, no. July, p. 167571, 2021, doi: 10.1016/j.ijleo.2021.167571.
-
2. Z. Cui, C. Yuan, K. Xu, Y. Sun, and S. Yin, “Modeling the Splice Loss of Single-Mode Optical Fibres Affected by Altitude,” IEEE Access, vol. 7, pp. 99283–99289, 2019, doi: 10.1109/ACCESS.2019.2927395.
-
3. B. Gelkop, L. Aichnboim, and D. Malka, “RGB wavelength multiplexer based on polycarbonate multicore polymer optical fibre,” Opt. Fibre Technol., vol. 61, no. July 2020, p. 102441, 2021, doi: 10.1016/j.yofte.2020.102441.
-
4. A. A. Ibrahim, M. M. Fouad, and A. A. Hamdi, “A Design Fibre Performance Monitoring Tool (FPMT) for Online Remote Fibre Line Performance Detection,” Electron., vol. 11, no. 21, 2022, doi: 10.3390/electronics11213627.
-
5. C. Pendão and I. Silva, “Optical Fibre Sensors and Sensing Networks: Overview of the Main Principles and Applications,” Sensors, vol. 22, no. 19, 2022, doi: 10.3390/s22197554.
-
6. A. A. Ibrahim, M. M. Fouad, and A. A. Hamdi, “Remote Real-Time Optical Layers Performance Monitoring Using a Modern FPMT Technique Integrated with an EDFA Optical Amplifier,” Electron., vol. 12, no. 3, pp. 1–19, 2023, doi: 10.3390/electronics12030601.
-
7. M. K. Barnoski and S. M. Jensen, “Fibre waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt., vol. 15, no. 9, p. 2112, 1976, doi: 10.1364/ao.15.002112.
-
8. S. P. Abdula, M. J. Llagas, A. M. Fernandez, and E. Arboleda, “Machine Learning Applications for Fault Tracing and Localization in Optical Fibre Communication Networks: A Review,” 2024, doi: 10.20944/preprints202405.1285.v1.
-
9. E. Quatrini, F. Costantino, G. Di Gravio, and R. Patriarca, “Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities,” J. Manuf. Syst., vol. 56, pp. 117–132, Jul. 2020, doi: 10.1016/j.jmsy.2020.05.013.
-
10. H. Zhang, J. Gao, and B. Hong, “Φ-OTDR Signal Identification Method Based on Multimodal Fusion,” Sensors, vol. 22, no. 22, pp. 1–12, 2022, doi: 10.3390/s22228795.
-
11. T. A. Ali and J. J. H. Ameen, “Study of Fault Detection Techniques for Optical Fibres,” Zanco J. Pure Appl. Sci., vol. 31, no. s3, 2019, doi: 10.21271/zjpas.31.s3.20.
-
12. K. Xu and C. Yuan, “A Fault Location Analysis of Optical Fibre Communication Links in High Altitude Areas,” Electron., vol. 12, no. 17, pp. 1–15, 2023, doi: 10.3390/electronics12173728.
-
13. O. Nyarko-Boateng, A. F. Adekoya, and B. A. Weyori, “Predicting the actual location of faults in underground optical networks using linear regression,” Eng. Reports, vol. 3, no. 3, pp. 1–13, 2021, doi: 10.1002/eng2.12304.
-
14. S. D. S. A. N. Ahmed, “Attenuation and Dispersion through Single Mode fibre Optic Simulation,” 2016.
-
15. A. H. Al-Fatlawi, M. M. Abdul Zahra, and H. A. Rassool, “Simulation of optical fibre cable regarding bandwidth limitations,” Int. J. Nonlinear Anal. Appl., vol. 12, no. Special Issue, pp. 1159–1174, 2021, doi: 10.22075/IJNAA.2021.5607.
-
16. G. A. Roth et al., “Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017 : a systematic analysis for the Global Burden of Disease Study 2017,” Lancet, vol. 392, no. 10159, pp. 1736–1788, 2018, doi: 10.1016/S0140-6736(18)32203-7.
-
17. T. Hayford-Acquah and B. Asante, “Causes of Fibre Cut and the Recommendation to Solve the Problem,” IOSR J. Electron. Commun. Eng., vol. 12, no. 01, pp. 46–64, 2017, doi: 10.9790/2834-1201014664.
-
18. R. Tariq et al., “An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves,” Energies, vol. 15, no. 17, 2022, doi: 10.3390/en15176468.
-
19. S. Aldi, K. Thallapally, D. Bussa, S. T. Rayini, and Y. Shekar, “Detection and Location of Faults in Underground Cables,” Int. J. Sci. Res. Eng. Dev., vol. 3, no. 2, pp. 0–4, 2020.
-
20. O. Nyarko-Boateng, A. F. Adekoya, and B. A. Weyori, “Adopting Intelligent Modelling to Trace Fault in Underground Optical Network : A Comprehensive Survey,” J. Comput. Sci., vol. 16, no. 10, pp. 1355–1366, 2020, doi: 10.3844/jcssp.2020.1355.1366.
-
21. V. Kumar and D. Rajouria, “Fault Detection Technique by using OTDR : Limitations and drawbacks on practical approach of measurement,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 6, 2012.
-
22. A. L. Paul and J. Oluwaseyi, “Predictive Maintenance : Leveraging Machine Learning for Equipment Health Monitoring,” no. January, 2024, [Online]. Available: https://www.researchgate.net/publication/377411657
-
23. A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine Learning for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp. 78658–78700, 2021, doi: 10.1109/ACCESS.2021.3083060.
-
24. M. Moshawrab, M. Adda, A. Bouzouane, H. Ibrahim, and A. Raad, “Reviewing Federated Learning Aggregation Algorithms; Strategies, Contributions, Limitations and Future Perspectives,” Electron., vol. 12, no. 10, pp. 1–35, 2023, doi: 10.3390/electronics12102287.
-
25. N. Xiong et al., “Lecture Notes on Data Engineering and Communications Technologies 153,” vol. 53, no. 0, p. 6221, 2022.
-
26. L. Skyttner, “Artificial Intelligence and Life,” Gen. Syst. Theory, pp. 319–351, 2006, doi: 10.1142/9789812774750_0007.
-
27. S. B. Lindström et al., “Pulp Particle Classification Based on Optical Fibre Analysis and Machine Learning Techniques,” Fibres, pp. 1–21, 2024.
-
28. A. Singh, P. Grover, A. K. Gautam, B. Nagappan, and N. Sharma, “Intelligent Systems And Applications In Engineering Novel prediction mechanism for Attack Prevention in Fibre-Optical Networks using AI-based SDN,” Int. J. Intell. Syst. Appl. Eng., vol. 12, pp. 1408–1414, 2024.
-
29. E. Manzoni, M. Rampazzo, and S. Del Favero, “Detection of glucose sensor faults in an artificial pancreas via whiteness test on kalman filter residuals,” IFAC-PapersOnLine, vol. 54, no. 7, pp. 274–279, 2021, doi: 10.1016/j.ifacol.2021.08.371.
-
30. N. Jihani, M. N. Kabbaj, and M. Benbrahim, “Sensor fault detection and isolation for smart irrigation wireless sensor network based on parity space,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, pp. 1463–1471, 2023, doi: 10.11591/ijece.v13i2.pp1463-1471.
-
31. M. Hashimoto, H. Kawashima, and F. Oba, “A multi-model based fault detection and diagnosis of internal sensors for mobile robot,” in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), 2003, pp. 3787–3792 vol.3. doi: 10.1109/IROS.2003.1249744.
-
32. C. He, X. Zhang, and B. Jia, “UIO based robust fault diagnosis approach for aero-engine fibre-optic sensor,” in 2013 IEEE International Conference on Automation Science and Engineering (CASE), 2013, pp. 550–553. doi: 10.1109/CoASE.2013.6653947.
-
33. X. Yan, T. Guan, K. Fan, and Q. Sun, “Novel double layer BiLSTM minor soft fault detection for sensors in air-conditioning system with KPCA reducing dimensions,” J. Build. Eng., vol. 44, no. July, p. 102950, 2021, doi: 10.1016/j.jobe.2021.102950.
-
34. A. A. Alwan, A. J. Brimicombe, M. A. Ciupala, S. A. Ghorashi, A. Baravalle, and P. Falcarin, “Time-series clustering for sensor fault detection in large-scale Cyber–Physical Systems,” Comput. Networks, vol. 218, p. 109384, 2022, doi: https://doi.org/10.1016/j.comnet.2022.109384.
-
35. W. Zhao, H. Luo, Q. Liu, H. Ji, and N. Sheng, “Incipient Sensor Fault Detection by Directly Monitoring Sliding Window Based Singular Values∗,” IFAC-PapersOnLine, vol. 55, no. 6, pp. 637–642, 2022, doi: 10.1016/j.ifacol.2022.07.199.
-
36. M. Uppal et al., “Cloud-Based Fault Prediction for Real-Time Monitoring of Sensor Data in Hospital Environment Using Machine Learning,” Sustain., vol. 14, no. 18, 2022, doi: 10.3390/su141811667.
-
37. W.-X. Liu, R.-P. Yin, and P.-Y. Zhu, “Deep Learning Approach for Sensor Data Prediction and Sensor Fault Diagnosis in Wind Turbine Blade,” IEEE Access, vol. 10, pp. 117225–117234, 2022, doi: 10.1109/ACCESS.2022.3219480.
-
38. A. Wahid, J. G. Breslin, and M. A. Intizar, “Prediction of Machine Failure in Industry 4.0: A Hybrid CNN-LSTM Framework,” Appl. Sci., vol. 12, no. 9, 2022, doi: 10.3390/app12094221.
-
39. M. Uppal, D. Gupta, S. Juneja, G. Dhiman, and S. Kautish, “Cloud-Based Fault Prediction Using IoT in Office Automation for Improvisation of Health of Employees,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/8106467.
-
40. S. Safavi, M. A. Safavi, and H. Hamid, “Health Forecasting for Autonomous Vehicles,” Sensors, pp. 1–23, 2021.
-
41. L. Hellerstein, “Learning with Maximum-Entropy Distributions ∗,” pp. 123–145, 2001.
-
42. J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,” IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 5, pp. 272–278, 2012.
-
43. A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Front. Neurorobot., vol. 7, no. DEC, 2013, doi: 10.3389/fnbot.2013.00021.
-
44. Abdullah-All-Tanvir, I. Ali Khandokar, A. K. M. Muzahidul Islam, S. Islam, and S. Shatabda, “A gradient boosting classifier for purchase intention prediction of online shoppers,” Heliyon, vol. 9, no. 4, p. e15163, 2023, doi: 10.1016/j.heliyon.2023.e15163.
-
45. S. Li, N. Jin, A. Dogani, Y. Yang, M. Zhang, and X. Gu, “Enhancing LightGBM for Industrial Fault Warning : An Innovative Hybrid Algorithm,” Processes, vol. 12, no. 1, 2024, doi: 10.3390/pr12010221.
-
46. M. R. Machado, S. Karray, and I. T. De Sousa, “LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry,” 14th Int. Conf. Comput. Sci. Educ. ICCSE 2019, no. Nips, pp. 1111–1116, 2019, doi: 10.1109/ICCSE.2019.8845529.
-
47. O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, and D. J. Inman, “Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks,” J. Sound Vib., vol. 424, pp. 158–172, 2018, doi: 10.1016/j.jsv.2018.03.008.
-
48. O. Avci, O. Abdeljaber, S. Kiranyaz, and D. Inman, “Structural damage detection in real time : Implementation of 1D convolutional neural networks for SHM applications,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 7, pp. 49–54, 2017, doi: 10.1007/978-3-319-54109-9_6.
-
49. S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications : A survey,” Mech. Syst. Signal Process., vol. 151, pp. 1–20, 2021, doi: 10.1016/j.ymssp.2020.107398.
-
50. K. M.Tarwani and S. Edem, “Survey on Recurrent Neural Network in Natural Language Processing,” Int. J. Eng. Trends Technol., vol. 48, no. 6, pp. 301–304, 2017, doi: 10.14445/22315381/ijett-v48p253.
-
51. Y. S. Shin and J. Kim, “Sensor Data Reconstruction for Dynamic Responses of Structures Using External Feedback of Recurrent Neural Network,” Sensors, vol. 23, no. 5, 2023, doi: 10.3390/s23052737.
-
52. A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom., vol. 404, no. March, 2020, doi: 10.1016/j.physd.2019.132306.