FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Review Article |

Enhancing Solar Energy Efficiency Integrating Neural Networks with Maximum Power Point Tracking Systems

Author(s): Seham Ahmed Hashem1, Ali Abdulwahhab Abdulrazzaq2, and Raghad Hameed Ahmed3*

Publisher : FOREX Publication

Published : 30 March 2025

e-ISSN : 2347-470X

Page(s) : 125-131




Seham Ahmed Hashem, Middle Technical University, Iraq; Email: dr.seham.ahmed@mtu.edu.iq

Ali Abdulwahhab Abdulrazzaq, Middle Technical University, Iraq; Email: dr.ali.abdulwahhab@mtu.edu.iq

Raghad Hameed Ahmed*, Middle Technical University, Iraq; Email: raghad.hammed@mtu.edu.iq

    1. R. Jena et al., “Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique,” Sustainability, vol. 15, no. 11, p. 8535, 2023. https://doi.org/10.3390/su15118535
    2. L. Karagözoğlu and Z. B. Duranay, “Maximum power point tracking of photovoltaic system using “Yapay neural networks”, Gümüşhane Üniversitesi Fen Bilim. Derg., vol. 13, no. 3, pp. 733–749, 2023. https://doi: 10.17714/gumusfenbil.1217821
    3. T. Bouadjila, K. Khelil, D. Rahem, and F. Berrezzek, “Improved Artificial Neural Network Based MPPT Tracker for PV System under Rapid Varying Atmospheric Conditions,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 67, no. 2, pp. 149–159, 2023. https://doi: 10.3311/ppee.20824
    4. R. Jena et al., “Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique,” Sustainability, vol. 15, no. 11, p. 8535, 2023. https://doi.org/10.3390/su15118535
    5. B. Neeraja, H. M. Salman, C. V. K. Reddy, S. Ghai, A. Deepak, and P. Kumar, “Neural Network based Solar Panel Tracking for Maximum Power Yield,” in 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 2022, pp. 1088–1093. https://doi.org/10.1109/IC3I56241.2022.10073167
    6. M. N. Ali, “A novel combination algorithm of different methods of maximum power point tracking for grid-connected photovoltaic systems,” J. Sol. Energy Eng., vol. 143, no. 4, p. 41003, 2021. https://doi.org/10.1115/1.4049065
    7. K. Mohammad and S. M. Musa, “Optimization of Solar Energy Using Artificial Neural Network Controller,” in 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), 2022, pp. 681–685. https://doi: 10.1109/CICN56167.2022.10008359
    8. E. Jarmouni, A. Mouhsen, M. Lamhamedi, H. Ouldzira, and I. En-Naoui, “Integration of an optimized neural network in a photovoltaic system to improve maximum power point tracking efficiency,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1276–1285, 2022. https://doi: 10.11591/ijeecs.v28.i3.pp1276-1285
    9. Rajanish, Kumar, Kaushal., V., Velmurugan., Subramanian, Mahendran., Balvender, Singh., J., Dhanraj. (2023). The Effective Solar Panel Tracker to Obtain Maximum Energy Optimization by Using Innovative Machine Learning. https://doi: 10.1109/ICECONF57129.2023.10084249
    10. H. M. A. H. Alwakeel, Q. F. A. Abed, and Z. Hamodat, “Improvement of solar energy efficiency using solar tracking and artificial intelligence,” in 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2022, pp. 355–359. https://doi: 10.1109/ISMSIT56059.2022.9932833
    11. U. ur Rehman, P. Faria, L. Gomes, and Z. Vale, “Artificial Neural Network Based Efficient Maximum Power Point Tracking for Photovoltaic Systems,” in 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2022, pp. 1–6. https://doi: 10.1109/EEEIC/ICPSEurope54979.2022.9854613
    12. H. Attia and A. Elkhateb, “Intelligent maximum power point tracker enhanced by sliding mode control,” Int. J. Power Electron. Drive Syst., vol. 13, no. 2, pp. 1037–1046, 2022. https://doi: 10.11591/ijpeds.v13.i2.pp1037-1046
    13. C. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. Álvarez-Alvarado, H. Rodriguez-Resendiz, A. M. Herrera-Navarro, and O. Rodríguez-Abreo, “Artificial neural networks in MPPT algorithms for optimization of photovoltaic power systems: A review,” Micromachines, vol. 12, no. 10, p. 1260, 2021. https://doi.org/10.3390/mi12101260
    14. K. Chandrasekaran, J. Selvaraj, C. R. Amaladoss, and L. Veerapan, “Hybrid renewable energy based smart grid system for reactive power management and voltage profile enhancement using artificial neural network,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 43, no. 19, pp. 2419–2442, 2021. https://doi.org/10.1080/15567036.2021.1902430
    15. N. Ghadami et al., “Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods,” Sustain. Cities Soc., vol. 74, p. 103149, 2021. https://doi.org/10.1016/j.scs.2021.103149
    16. M. Kermadi and E. M. Berkouk, “Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study,” Renew. Sustain. Energy Rev., vol. 69, pp. 369–386, 2017. https://doi.org/10.1049/iet-rpg.2014.0359
    17. L. Tightiz, S. Mansouri, F. Zishan, J. Yoo, and N. Shafaghatian, “Maximum power point tracking for photovoltaic systems operating under partially shaded conditions using SALP swarm algorithm,” Energies, vol. 15, no. 21, p. 8210, 2022. https://doi.org/10.3390/en15218210
    18. B. Du and P. D. Lund, “Application of Artificial Neural Network in Solar Energy,” in Artificial Neural Networks-Recent Advances, New Perspectives, and Applications, Intech Open, 2022. https://doi: 10.5772/intechopen.106977
    19. P. V. Mahesh, S. Meyyappan, and R. Alla, “Support vector regression machine learning based maximum power point tracking for solar photovoltaic systems,” Int. J. Electr. Comput. Eng. Syst., vol. 14, no. 1, pp. 100–108, 2023. https://doi.org/10.32985/ijeces.14.1.11
    20. A. Ibrahim et al., “Artificial neural network based maximum power point tracking for PV system,” in 2019 Chinese Control Conference (CCC), 2019, pp. 6559–6564. https://doi:10.23919/ChiCC.2019.8865275

Seham Ahmed Hashem, Ali Abdulwahhab Abdulrazzaq and Raghad Hameed Ahmed (2025), Enhancing Solar Energy Efficiency Integrating Neural Networks with Maximum Power Point Tracking Systems . IJEER 13(1), 125-131. DOI: 10.37391/IJEER.130116.