Research Article | ![]()
Design and Simulation of a Quaternary Logic Gate Using a Universal Spatial Wavefunction Switched Field-Effect Transistor NOR Gate
Author(s): Bander Saman1*
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 4
Publisher : FOREX Publication
Published : 30 November 2025
e-ISSN : 2347-470X
Page(s) : 656-664
Abstract
In Very Large-Scale Integration (VLSI) design, minimizing area and optimizing device performance have become paramount as traditional MOSFET scaling approaches fundamental limits. Energy efficiency is now a primary goal due to MOSFET scaling challenges. Multi-valued logic (MVL), such as quaternary (2-bit) logic, offers a potential solution by increasing information density and reducing interconnect complexity. However, implementing four discrete voltage levels in quaternary logic requires novel device technologies. This work explores Spatial Wavefunction Switched FET (SWS-FET) devices – quantum well transistors enabling multi-state carrier transport – as a size- and power-efficient platform for quaternary logic. We present the development of complementary n-channel and p-channel SWS-FETs to encode the four logic states (00, 01, 10, 11). The proposed SWS-FET quaternary logic gate circuits are designed and simulated using an 180nm CMOS-compatible device model. The accuracy of the SWS-FET circuits is verified in Cadence Virtuoso using a combination of the industry-standard BSIM transistor model and an analog behavioral model (ABM) to capture multi-threshold behavior. Circuit simulations of the 2-bit NOR gate demonstrate that using SWS-FETs reduces transistor count by approximately 42% compared to an equivalent CMOS implementation and by up to 68% compared to current-mode MVL designs. These gains are achieved with low power dissipation and competitive switching speeds, highlighting the promise of SWS-FET technology for energy-efficient multi-valued logic design.
Keywords: Multi-valued logic, Quaternary logic, QDC-FET, SWS-FET, NOR gate, Universal quaternary gate.
Bander Saman, Department of Electrical Engineering, Taif University, Taif, Saudi Arabia; Email: saman@tu.edu.sa
-
[1] Patel, V. and Gurumurthy, K. S. 2011. Design of high-performance quaternary adders. Proceedings of the IEEE International Symposium on Multiple-Valued Logic (ISMVL), Portland, OR, USA, 89–94. doi:10.1109/ISMVL.2011.65.
-
[2] Jain, F., Saman, B., Gudlavalleti, R. H., Chandy, J., and Heller, E. 2019. Multi state 2-bit CMOS logic using n and p quantum well channel spatial wavefunction switched (SWS) FETs. High Performance Logic and Circuits for High-Speed Electronic Systems, World Scientific, Singapore, 101–112. doi:10.1142/9789811208447_0007.
-
[3] Jain, F., Lingalugari, M., Kondo, J., Mirdha, P., Suarez, E., Chandy, J., and Heller, E. 2016. Quantum dot channel (QDC) FETs with wraparound II–VI gate insulators: numerical simulations. Journal of Electronic Materials 45(10), 5663–5670. doi:10.1007/s11664-016-4812-y.
-
[4] Lingalugari, M., Jain, F., Kondo, J., Mirdha, P., and Suarez, E. 2013. Novel multistate quantum dot gate FETs using SiO₂ and lattice matched ZnS–ZnMgS–ZnS as gate insulators. Journal of Electronic Materials 42, 3156–3163. doi:10.1007/s11664-013-2696-7.
-
[5] Kumar, S. K. and Joshi, A. R. 2022. Comparative study of quaternary logic models in circuit design. IET Circuits, Devices & Systems 16(1), 77–86. doi:10.1049/iet-cds.2021.05027.
-
[6] Zhang, W. and Chen, Y. 2021. Multi valued logic applications using quantum dot transistors. Nanoelectronics Journal 15(2), 103–115. doi: 10.1016/j.nanoel.2021.03.015.
-
[7] Lee, J. and Wong, H. 2022. Power efficient quaternary logic design using SWS FETs. Electronics Letters 58(10), 215–217. doi:10.1049/el.2022.0153.
-
[8] Novak, J. and Kral, P. 2020. High speed low power quaternary logic circuits using novel semiconductor devices. Journal of Electrical Engineering 71(5), 345–353.
-
[9] Zeman, M. and Jancík, R. 2021. Efficiency optimization of multi valued logic gates based on quantum dot transistors. Journal of Electrical Engineering 72(3), 192–200.
-
[10] Kovac, T. and Dvorak, P. 2022. Implementation of quaternary computing elements for AI based systems. Journal of Electrical Engineering 73(2), 165–172.
-
[11] Akbari Hasanjani, R. and Sabbaghi Nadooshan, R. 2024. Design and simulation of innovative QCA quaternary logic gates. Advanced Theory and Simulations 7(9), 2300215. doi:10.1002/ats.2300215.
-
[12] Yoo, H. and Kim, C.-H. 2021. Multi valued logic system: new opportunities from emerging materials and devices. Journal of Materials Chemistry C 9, 4092–4104. doi:10.1039/D1TC00148E.
-
[13] Kalpana, K., Prasanna, S. V., Rahul, S. L., and Ranjani, R. 2023. A novel area-efficient TIEO-based reversible logic gates in QCA paradigm. Proceedings of the 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 1003–1008. doi:10.1109/I-SMAC58438.2023.10289706.
-
[14] Novak, J., Dvorak, P., and Kovac, T. 2023. Next generation QCA based MVL circuits. Journal of Electrical Engineering 73(3), 212–219.
-
[15] Dvorak, P., Kovac, T., and Zeman, M. 2022. Scalable multi valued logic designs using QCA. Journal of Electrical Engineering 73(4), 278–285.
-
[16] Lee, J. K., Kim, M. H., and Lee, Y. S. 2023. Recent advances and challenges in the integration of multivalued logic with CMOS-compatible technologies. IEEE Journal of the Electron Devices Society 11, 812–825. doi:10.1109/JEDS.2023.3267581.
-
[17] Jain, F., Heller, E., Gudlavalleti, R., Saman, B., and Chandy, J. 2019. Multi-bit SRAMs, registers, and logic using quantum well channel SWS-FETs for low-power, high-speed computing. International Journal of High-Speed Electronics and Systems 28, 1940024.
-
[18] Chowdhury, S. N., Ishtiak, K. M., and Faiyaz, A. 2015. Formulation and design of useful logic gates using quaternary algebra. International Journal of Scientific and Engineering Research 6(1), 162–169.
-
[19] Saman, B. 2018. Efficient multi-bit SRAMs using nanostructure field-effect transistors (NANO-FETS). Proceedings of the China Semiconductor Technology International Conference (CSTIC), 1–4.
-
[20] Lopez, J. A. and Watanabe, T. W. 2022. Design of low-power inverters in quaternary logic using quantum-dot devices. IEEE Transactions on Circuits and Systems I: Regular Papers 69(10), 3956–3967.
-
[21] Faiyaz, A., Chowdhury, S. N., and Ishtiak, K. M. 2016. Logic design of elementary functional operators in quaternary algebra. International Journal of Computer Theory and Engineering 8(3), 162–169. doi:10.7763/IJCTE.2016.V8.1053.
-
[22] Ahmad, F. M. and Duan, L. P. 2023. MVL NOR gate optimization for AI-centric circuits. IEEE Access 11, 11502–11510.
-
[23] Rao, L. T., Huang, D., and Lee, H. 2022. Multiple-valued logic realization with advanced FET structures. Journal of Computational Electronics 21(3), 547–556.
-
[24] Park, D. B. and Kim, Y. S. 2021. Encoding strategies in quaternary arithmetic for reliable hardware realization. Microelectronics Reliability 125, 1–8.
-
[25] Ghosh, A. L., Patel, M. B., and Ren, Z. 2023. Design metrics for multi-level logic gates using emerging FET technologies. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 9, 30–38.
-
[26] Singh, P. R. and Desai, A. 2023. Challenges in mapping quaternary logic to binary systems for digital ICs. Microelectronics Journal 128, 105642.
-
[27] Gudlavalleti, R., Jain, F., Saman, B., and Chandy, J. 2023. Design of SWS-FET based inverters for MVL logic circuits. IEEE Transactions on Electron Devices 70(2), 456–463.
-
[28] Gogna, P., Bansal, M., Kumar, R., Singh, A., and Sharma, M. 2012. Quaternary logic and applications using multiple quantum well based SWS-FETs. International Journal of VLSI Design and Communication Systems 3(5), 27–42.
-
[29] Basha, S. J. and Venkatramana, P. 2023. High performance quaternary logic designs using GNFETs. e-Prime – Advances in Electrical Engineering, Electronics and Energy 5, 100197.
-
[30] Moaiyeri, M. H., Mirzaee, R. F., Doostaregan, A., Navi, K., and Hashemipour, O. 2013. A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits. IET Computers & Digital Techniques 7(4), 167–181.
-
[31] Saman, B., Heller, E., and Jain, F. 2024. The static noise margin (SNM) of quaternary SRAM using quantum SWS-FET. International Journal of High-Speed Electronics and Systems 33, 2440069.
-
[32] da Silva, R., Horta, L. G. H., and Schneider, M. C. 2006. A new quaternary logic family based on binary logic gates. Microelectronics Journal 37(10), 1135–1140. doi:10.1016/j.mejo.2006.05.005.
-
[33] Park, S., Shim, H., and Kang, S.-M. 2004. Design of differential pass-transistor logic with neuron MOS for multiple-valued logic. Proceedings of the IEEE International Symposium on Multiple-Valued Logic (ISMVL), Toronto, Canada, 166–171. doi:10.1109/ISMVL.2004.1300326.
-
[34] Ebrahimi, S., Navi, H., and Hashemipour, O. 2015. A novel design for quaternary logic gates based on carbon nanotube field-effect transistors. Microelectronics Journal 46(6), 497–504. doi:10.1016/j.mejo.2015.02.013.
-
[35] Temel, S. and Morgul, O. 2002. Current-mode CMOS multiple-valued logic circuits. International Journal of Electronics 89(5), 375–389. doi:10.1080/00207210210122675.
-
[36] Shanbhag, N. and Parhi, K. K. 1990. High-speed multiple-valued logic circuits. Proceedings of the IEEE International Symposium on Multiple-Valued Logic (ISMVL), Charlotte, NC, USA, 101–108. doi:10.1109/ISMVL.1990.121457.

I. J. of Electrical & Electronics Research