FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Hybrid CNN-BiLSTM Autoencoder for Anomaly Detection in Remote Photoplethysmography(rPPG) Signals

Author(s): Moussa Mmadi1*, George Kamucha2, and Ciira wa Maina3

Publisher : FOREX Publication

Published : 10 December 2025

e-ISSN : 2347-470X

Page(s) : 704-711




Moussa Mmadi*, Department of Electrical Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya; Email: moussa.mmadi@students.jkuat.ac.ke

George Kamucha, Department of Electrical and Information Engineering, University of Nairobi, Nairobi, Kenya; Email: gkamucha@uonbi.ac.ke

Ciira wa Maina, Department of Electrical Engineering, Dedan Kimathi University of Technology, Nyeri, Kenya; Email: ciira.maina@dkut.ac.ke

    [1] Guangkun Nie, et al. (2024). A review of deep learning methods for photoplethysmography data. arXiv preprint arXiv:2401.12783.
    [2] Shutao Chen, Kwan-Long Wong, Jing-Wei Chin, Tsz-Tai Chan, and Richard H. Y. So (2024). DiffPhys: Enhancing Signal-to-Noise Ratio in Remote Photoplethysmography Signal Using a Diffusion Model Approach. Bioengineering, 11(8), 743. DOI: 10.3390/bioengineering11080743.
    [3] Lee, K., Kim, S., An, B., Seo, H., Park, S., and Lee, E. C. (2023). Noise-Assessment-Based Screening Method for Remote Photoplethysmography Estimation. Applied Sciences, 13(17), 9818.
    [4] J. Speth, A. D. Bagheri, D. McDuff, and S. Hershey, "Hallucinated Heartbeats: Anomaly-Aware Remote Pulse Estimation," arXiv preprint arXiv:2303.06452, 2023.
    [5] Botina-Monsalve, Deivid, Yannick Benezeth, and Johel Miteran. "Performance analysis of remote photoplethysmography deep filtering using long short-term memory neural network." BioMedical Engineering Online 21.1 (2022): 69.
    [6] Varun Chandola, Arindam Banerjee, and Vipin Kumar (2009). Anomaly Detection: A Survey. ACM Computing Surveys (CSUR), 41(3), 1–58.
    [7] Massaroni, C., Nicolo, A., Sacchetti, M., and Schena, E. (2020). Contactless Methods for Measuring Respiratory Rate: A Review. IEEE Sensors Journal, 21(11), 12821–12839.
    [8] Lee, J., Kim, M., Park, H. K., and Kim, I. Y. (2020). Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths. Sensors, 20(5), 1493. DOI: 10.3390/s20051493.
    [9] S.-Q. Liu and P. C. Yuen, "Robust Remote Photoplethysmography Estimation with Environmental Noise Disentanglement," IEEE Transactions on Image Processing, vol. 32, pp. 2570–2583,2023.
    [10] Choi, K., Yi, J., Park, C., and Yoon, S. (2021), Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines. IEEE Access, 9, 120043–120065. DOI: 10.1109/ACCESS.2021.3107975.
    [11] Fahim, M., and Sillitti, A. (2019). Anomaly Detection, Analysis and Prediction Techniques in IoT Environment: A Systematic Literature Review. IEEE Access, 7, 81664–81681. DOI: 10.1109/ACCESS.2019.2924225.
    [12] R. Yousefi, M. Nourani, Separating arterial and venous-related components of photoplethysmographic signals for accurate extraction of oxygen saturation and respiratory rate, IEEE J. Biomed. Health Inf. 19 (3) (2014) 848–857.
    [13] A. Gudi, M. Bittner, J. van Gemert, Real-time webcam heart-rate and variability estimation with clean ground truth for evaluation, Appl. Sci. 10 (23) (2020) 8630.
    [14] G. de Haan and V. Jeanne, "Robust Pulse Rate from Chrominance-Based rPPG," IEEE Transactions on Biomedical Engineering, vol. 60, no. 10, pp. 2878–2886, 2013.
    [15] M.-Z. Poh, D. J. McDuff, and R. W. Picard, "Non-contact, automated cardiac pulse measurements using video imaging and blind source separation," Optics Express, vol. 18, no. 10, pp. 10762–10774, 2010.
    [16] S. Guler, A. Golparvar, O. Ozturk, H. Dogan, and M. K. Yapici, “Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning,” Biomedical Physics & Engineering Express, vol. 9, no. 2, p. 025003, Feb. 2023.
    [17] Stricker, R., Müller, S., Gross, H.-M. “Non-contact Video-based Pulse Rate Measurement on a Mobile Service Robot,” in: Proc. 23rd IEEE Int. Symposium on Robot and Human Interactive Communication (Ro-Man 2014), Edinburgh, Scotland, UK, pp. 1056-1062, IEEE 2014.
    [18] Wang, Y., Perry, M., Whitlock, D., and Sutherland, J. W. (2022). Detecting Anomalies in Time Series Data from a Manufacturing System Using Recurrent Neural Networks. Journal of Manufacturing Systems, 62, 823–834. DOI: 10.1016/j.jmsy.2022.01.011.
    [19] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection: A Survey,” Jan. 2019, Accessed: Feb. 23, 2023. [Online]. Available: http://arxiv.org/abs/1901.03407.
    [20] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, "Remote plethysmographic imaging using ambient light," Optics Express, vol. 16, no. 26, pp. 21434–21445, 2008.
    [21] A. Hyvärinen and E. Oja, "Independent component analysis: algorithms and applications," Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.
    [22] S. Bobbia, R. Macwan, Y. Benezeth, A. Mansouri, J. Dubois, "Unsupervised skin tissue segmentation for remote photoplethysmography", Pattern Recognition Letters, 2017.
    [23] Pankaj, Malhotra. "LSTM-based encoder-decoder for multi-sensor anomaly detection." CoRR 1607 (2016).
    [24] M. Mmadi, G. N. Kamucha, C. Maina, “Contactless Algorithm for Identifying the Facial Area Containing the Most Vital Sign-Related Information Using Machine Learning,” Harbin Engineering Journal, vol.46, no. 05, pp. 89-99, May. 2024, https://harbinengineeringjournal.com/index.php/journal/article/view/4200/2375.
    [25] Keras Docs: Anomaly Detection in Time Series Using Autoencoders, Accessed: May. 10, 2025. [Online]. Available: https://keras.io/examples/timeseries/timeseries_anomaly_detection/
    [26] Nawaz, Ali, Shehroz S. Khan, and Amir Ahmad. "Ensemble of autoencoders for anomaly detection in biomedical data: A narrative review." IEEE Access 12 (2024): 17273-17289.
    [27] Guillaume Heusch, André Anjos, Sébastien Marcel, “A reproducible study on remote heart rate measurement”, arXiv, 2016. [online]. Available: http://publications.idiap.ch/index.php/publications/show/3688
    [28] "PURE dataset," [Online]. Available: http://www.tu-ilmenau.de/neurob/data-sets/pulse. [Accessed: Apr. 30, 2024].

Moussa Mmadi, George Kamucha, and Ciira wa Maina (2025), Hybrid CNN-BiLSTM Autoencoder for Anomaly Detection in Remote Photoplethysmography(rPPG) Signals. IJEER 13(4), 704-711. DOI: 10.37391/IJEER.130410.