FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Comparative Deep Learning for RGB-Based PV Surface Fault Classification Using ResNet50 and EfficientNetB0 with Real-Time Deployment

Author(s): Mosbah Laouamer1*, Mohammed Adaika2, Souhaib Remha3, Abdelkader Mahmoudi4, and Hamza Adaika5

Publisher : FOREX Publication

Published : 10 December 2025

e-ISSN : 2347-470X

Page(s) : 712-721




Mosbah Laouamer*, UDERZA Unit, Mechanical Department, Faculty of Technology, University of El Oued, 39000 El Oued, Algeria; Email: laouamer-mosbah@univ-eloued.dz

Mohammed Adaika, LPMRN Laboratory, Department of Electromechanical Engineering, University of Bordj Bou Arreridj, El-Anasser, 34030, Bordj Bou Arreridj, Algeria; Email: mohammed.adaika@univ-bba.dz

Souhaib Remha, UDERZA Unit, Mechanical Department, Faculty of Technology, University of El Oued, 39000 El Oued, Algeria; Email: remha-souhaib@univ-eloued.dz

Abdelkader Mahmoudi, UDERZA Unit, Mechanical Department, Faculty of Technology, University of El Oued, 39000 El Oued, Algeria; Email: abdelkader-mahmoudi@univ-eloued.dz

Hamza Adaika, University of El Oued, 39000 El Oued, Algeria; Email: hamza-adaika@univ-eloued.dz

    [1] Akram, M.W.; Li, G.; Jin, Y.; Chen, X. Failures of Photovoltaic Modules and Their Detection: A Review. Applied Energy 2022, 313, 118822. https://doi.org/10.1016/j.apenergy.2022.118822.
    [2] IRENA. Renewable Capacity Statistics 2024; International Renewable Energy Agency: March 2024. Available online: https://www.irena.org/publications/2024/Mar/Renewable-Capacity-Statistics-2024 (accessed on 26 August 2025).
    [3] IRENA. World Energy Transitions Outlook 2024: 1.5°C Pathway; International Renewable Energy Agency: November 2024. Available online: https://www.irena.org/publications/2024/Nov/World-Energy-Transitions-Outlook-2024 (accessed on 26 August 2025).
    [4] Osmani, K.; Haddad, A.; Lemenand, T.; Castanier, B.; Alkhedher, M.; Ramadan, M. A Critical Review of PV Systems’ Faults with the Relevant Detection Methods. Energy Nexus 2023, 12, 100257. https://doi.org/10.1016/j.nexus.2023.100257
    [5] Özkalay, E.; Valoti, F.; Caccivio, M.; Virtuani, A.; Friesen, G.; Ballif, C. The Effect of Partial Shading on the Reliability of Photovoltaic Modules in the Built-Environment. EPJ Photovoltaics 2024, 15, 7. https://doi.org/10.1051/epjpv/2024001
    [6] Korkmaz, D.; Acikgoz, H. An Efficient Fault Classification Method in Solar Photovoltaic Modules Using Transfer Learning and Multi-Scale Convolutional Neural Network. Engineering Applications of Artificial Intelligence 2022, 113, 104959. https://doi.org/10.1016/j.engappai.2022.104959
    [7] Abdelsattar, M.; AbdelMoety, A.; Emad-Eldeen, A. ResNet-Based Image Processing Approach for Precise Detection of Cracks in Photovoltaic Panels. Scientific Reports 2025, 15, 24356. https://doi.org/10.1038/s41598-025-09101-z.
    [8] Akınca, R.; Fırat, H.; Asker, M.E. Automated Fault Classification in Solar Panels Using Transfer Learning with EfficientNet and ResNet Models. European Journal of Technique 2024, 14(2), 164–173. https://doi.org/10.36222/ejt.1533783
    [9] Ledmaoui, Y.; El Maghraoui, A.; El Aroussi, M.; Saadane, R. Enhanced Fault Detection in Photovoltaic Panels Using CNN-Based Classification with PyQt5 Implementation. Sensors 2024, 24, 7407. https://doi.org/10.3390/s24227407
    [10] Duranay, Z.B. Fault Detection in Solar Energy Systems: A Deep Learning Approach. Electronics 2023, 12, 4397. https://doi.org/10.3390/electronics12214397
    [11] Lenarczyk, A. PV Panel Defect Dataset; Kaggle: 2025. Available online: https://www.kaggle.com/datasets/alicjalena/pv-panel-defect-dataset (accessed on 26 August 2025).
    [12] Pathak, S.P.; Patil, S.A.; Patel, S. Solar Panel Hotspot Localization and Fault Classification Using Deep Learning Approach. Procedia Computer Science 2022, 204, 698–705. https://doi.org/10.1016/j.procs.2022.08.087
    [13] Karakan, A. Detection of Defective Solar Panel Cells in Electroluminescence Images with Deep Learning. Sustainability 2025, 17, 1141. https://doi.org/10.3390/su17031141
    [14] Espinosa, A.R.; Bressan, M.; Giraldo, L.F. Failure Signature Classification in Solar Photovoltaic Plants Using RGB Images and Convolutional Neural Networks. Renewable Energy 2020, 162, 249–256. https://doi.org/10.1016/j.renene.2020.07.106
    [15] Acikgoz, H.; Korkmaz, D.; Budak, U. Photovoltaic Cell Defect Classification Based on Integration of Residual-Inception Network and Spatial Pyramid Pooling in Electroluminescence Images. Expert Systems with Applications 2023, 229, 120546. https://doi.org/10.1016/j.eswa.2023.120546
    [16] Priyadarshini, R.; Manoharan, P.S.; Roomi, S.M.M. Efficient Net-Based Deep Learning for Visual Fault Detection in Solar Photovoltaic Modules. Tehnički vjesnik 2025, 32(1), 233–241. https://doi.org/10.17559/TV-20240217001329.

Mosbah Laouamer, Mohammed Adaika, Souhaib Remha, Abdelkader Mahmoudi, Hamza Adaika (2025), Comparative Deep Learning for RGB-Based PV Surface Fault Classification Using ResNet50 and EfficientNetB0 with Real-Time Deployment. IJEER 13(4), 712-721. DOI: 10.37391/IJEER.130411.