Research Article | ![]()
Beluga Whale Optimization (BWO) Algorithm for Maximum Power Point Tracking from PV System for an Open-End Winding Induction Motor Drive with MPC-SVM Modulation
Author(s): Balakrishna Kothapalli1*, Dr. G T Sundar Rajan2
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 4
Publisher : FOREX Publication
Published : 15 December 2025
e-ISSN : 2347-470X
Page(s) : 756-771
Abstract
This paper presents a novel control framework integrating the Beluga Whale Optimization (BWO) algorithm for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems driving an Open-End Winding Induction Motor (OEWIM) using a Model Predictive Control–Space Vector Modulation (MPC–SVM) strategy. The BWO algorithm, inspired by the intelligent hunting behaviour of beluga whales, is employed to dynamically extract the global maximum power point under varying irradiance and temperature conditions, enhancing PV efficiency. The extracted power feeds a dual-inverter OEWIM drive, which offers greater voltage flexibility and fault tolerance compared to conventional topologies. To ensure optimal current quality and torque performance, the MPC–SVM scheme predicts future motor states and applies an optimized voltage vector synthesized via space vector modulation. The system also incorporates discrete-time current modelling, delay compensation, virtual voltage vector generation, and dead-time compensation to address practical implementation challenges. Simulation results validate the superiority of the proposed BWO-MPPT and MPC–SVM-driven OEWIM architecture in achieving rapid MPPT convergence, reduced current ripple, improved torque stability, and high system efficiency under dynamic operating conditions. This integrated approach is highly suitable for renewable energy-based electric drive applications in smart grid and industrial automation environments.
Keywords: Beluga Whale Optimization (BWO), Maximum Power Point Tracking (MPPT), Open-End Winding Induction Motor (OEWIM), Model Predictive Control (MPC), Space Vector Modulation (SVM), Photovoltaic (PV) System.
Balakrishna Kothapalli*, Research Scholar, EEE Department, Sathyabama Institute of Science and Technology, Chennai, India; Email: kotapallibalakrishna@gmail.com
Dr. G T Sundar Rajan, Professor, EEE Department, Sathyabama Institute of Science and Technology, Chennai, India; Email: sundarrajan.eee@sathyabama.ac.in
-
[1] Nezamisavojbolaghi, M., Davodian, E., Bouich, A., & Tlemçani, M. (2023). Characterization and Sensitivity Analysis of a Photovoltaic Panel. Advanced Energy Conversion Materials, 164-173.
-
[2] Avesh, M., Hossain, I., & Sharma, R. C. (2024). Revolutionizing transportation: The future impact of green energy. In Dynamics of transportation ecosystem, modeling, and control (pp. 261-293). Singapore: Springer Nature Singapore.
-
[3] Arrozy, J. (2023). Exploring Multiphase Inverters for Open-Winding Machine Drives: Topologies, Fault Tolerance, and Impacts of Modulation Techniques.
-
[4] Chakrabarti, A., Saha, A., & Biswas, S. K. (2021). Winding open‐circuit fault‐tolerant operation of single DC‐link dual‐inverter fed three‐phase open‐end induction motor drive. IET Power Electronics, 14(7), 1256-1270.
-
[5] Valencia, D. F., Tarvirdilu-Asl, R., Garcia, C., Rodriguez, J., & Emadi, A. (2021). Vision, challenges, and future trends of model predictive control in switched reluctance motor drives. IEEE Access, 9, 69926-69937.
-
[6] Hoggui, A., Benachour, A., Madaoui, M. C., & Mahmoudi, M. O. (2024). Comparative Analysis of Direct Torque Control with Space Vector Modulation (DTC-SVM) and Finite Control Set-Model Predictive Control (FCS-MPC) of Five-Phase Induction Motors. Progress in Electromagnetics Research B, 108
-
[7] Chang, C. C. W., Ding, T. J., Bhuiyan, M. A. S., Chao, K. C., Ariannejad, M., & Yian, H. C. (2023). Nature-inspired optimization algorithms in solving partial shading problems: a systematic review. Archives of computational methods in engineering, 30(1), 223-249.
-
[8] Zhong, C., Li, G., & Meng, Z. (2022). Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowledge-based systems, 251, 109215.
-
[9] Mhanni, Y., & Lagmich, Y. (2024). Adaptive metaheuristic strategies for optimal power point tracking in photovoltaic systems under fluctuating shading conditions. EPJ Photovoltaics, 15, 31.
-
[10] Huang, K. H., Chao, K. H., Kuo, Y. P., & Chen, H. H. (2023). Maximum power point tracking of photovoltaic module arrays based on a modified gray wolf optimization algorithm. Energies, 16(11), 4329.
-
[11] Rojas-Galván, R., García-Martínez, J. R., Cruz-Miguel, E. E., Álvarez-Alvarado, J. M., & Rodríguez-Resendiz, J. (2024). Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Biomimetics, 9(10), 649.
-
[12] Liu, T., Liu, S., Yu, H., Wu, Z., Tong, J., & Yuan, Q. (2024). Research on Hybrid Approach for Maximum Power Point Tracking of Photovoltaic Systems under Various Operating Conditions. Electronics, 13(19), 3880.
-
[13] Worku, M. Y., Hassan, M. A., Maraaba, L. S., Shafiullah, M., Elkadeem, M. R., Hossain, M. I., & Abido, M. A. (2023). A comprehensive review of recent maximum power point tracking techniques for photovoltaic systems under partial shading. Sustainability, 15(14), 11132.
-
[14] Ali, H. H., Ebeed, M., Fathy, A., Jurado, F., Babu, T. S., & A. Mahmoud, A. (2023). A new hybrid multi-population GTO-BWO approach for parameter estimation of photovoltaic cells and modules. Sustainability, 15(14), 11089.
-
[15] You, G., Lu, Z., Qiu, Z., & Cheng, H. (2024). AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems. Biomimetics, 9(12), 727.
-
[16] Du, W., Peng, S. T., Wu, P. S., & Tseng, M. L. (2024). High-accuracy photovoltaic power prediction under varying meteorological conditions: enhanced and improved beluga whale optimization extreme learning machine. Energies, 17(10), 2309.
-
[17] Mousavi, M. S., Davari, S. A., Flores‐Bahamonde, F., Garcia, C., & Rodriguez, J. (2023). Sampling error‐based model‐free predictive current control of open‐end winding induction motor with simplified vector selection. IET Electric Power Applications, 17(3), 358-369.
-
[18] Cataldo, P., Jara, W., Riedemann, J., Pesce, C., Andrade, I., & Pena, R. (2023). A predictive current control strategy for a medium-voltage open-end winding machine drive. Electronics, 12(5), 1070.
-
[19] Praveen Kumar, K. V., & Vinay Kumar, T. (2018). Predictive torque control of open‐end winding induction motor drive fed with multilevel inversion using two two‐level inverters. IET Electric Power Applications, 12(1), 54-62.
-
[20] Geng, Y., Han, P., Chen, X., Chen, R., Le, Z., & Lai, Z. (2021). On‐line dead‐time compensation method for dual three phase PMSM based on adaptive notch filter. IET Power Electronics, 14(15), 2452-2465.
-
[21] Yuan, D., Zhang, X., Yin, Z., Jia, X., & Gao, Y. (2023, November). A Strategy for Improving Dead-Time Performance of Induction Motor Based on SiC MOSFET. In International Joint Conference on Energy, Electrical and Power Engineering (pp. 316-322). Singapore: Springer Nature Singapore.
-
[22] Son, D. I., Han, J. S., Park, J. S., Lim, H. S., & Lee, G. H. (2023). Performance improvement of dtc-svm of pmsm with compensation for the dead time effect and power switch loss based on extended kalman filter. Electronics, 12(4), 966.
-
[23] Mohammed, H. M., Umar, S. U., & Rashid, T. A. (2019). A systematic and meta‐analysis survey of whale optimization algorithm. Computational intelligence and neuroscience, 2019(1), 8718571.

I. J. of Electrical & Electronics Research