Research Article | ![]()
Evaluating Reservoir Spiking Neural Network Configurations for Accurate Battery State-of-Health Prediction
Author(s): Muhammad Raihaan Kamarudin1*, Muhammad Noorazlan Shah Zainudin2, Mohd Syafiq Mispan3, and Raihani Mohamed4
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 4
Publisher : FOREX Publication
Published : 15 December 2025
e-ISSN : 2347-470X
Page(s) : 792-801
Abstract
Accurate prediction of battery State-of-Health (SoH) is crucial for ensuring safety, reliability, and longevity in energy storage systems. This study evaluates the utilization of Reservoir Spiking Neural Networks (RSNN) for battery SoH prediction, focusing on how network configuration affects prediction performance. Various RSNN architectures are analyzed by varying reservoir neuron number, connection density, inhibitory ratio, time step window, and readout network configuration. The findings show that a simple RSNN structure is sufficient to achieve high prediction accuracy, provided that the network is carefully configured to produce diversity in the spike count patterns within the reservoir layer. For the SoH dataset used, the original input features alone do not yield sufficient diversity, highlighting the importance of structural tuning in the reservoir. In the optimized network model, the prediction accuracy achieved a lowest error of 0.029 ± 0.011 RMSE, demonstrating strong accuracy and generalization across different battery datasets, with an energy consumption of approximately 150 nJ. Furthermore, this work provides a framework for implementing RSNN models on embedded platforms, including neuromorphic devices such as Intel Loihi and SoC-FPGA platforms with customized hardware circuits. The results demonstrate the potential of RSNNs as lightweight, efficient, and hardware-friendly models for practical battery SoH prediction.
Keywords: Reservoir Spiking Neural Network, State-of-Health Prediction, Neuromorphic Computing, Battery Management System.
Muhammad Raihaan Kamarudin*, Fakulti Kecerdasan Buatan dan Keselamatan Siber, Universiti Teknikal Malaysia Melaka, Malaysia; Email: raihaan@utem.edu.my
Muhammad Noorazlan Shah Zainudin, Fakulti Kecerdasan Buatan dan Keselamatan Siber, Universiti Teknikal Malaysia Melaka, Malaysia; Email: noorazlan@utem.edu.my
Mohd Syafiq Mispan, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, Malaysia; Email: syafiq.mispan@utem.edu.my
Raihani Mohamed, Fakulti Sains Komputer dan Teknologi Maklumat, Universiti Putra Malaysia, Malaysia; Email: raihanimohamed@upm.edu.my
-
[1] Hu, X.; Feng, F.; Liu, K.; Zhang, L.; Xie, J.; Liu, B. State estimation for advanced battery management: Key challenges and future trends. Renew. Sustain. Energy Rev. 2019, 114, 109334.
-
[2] Chen, M.; Ma, G.; Liu, W.; Zeng, N.; Luo, X. An overview of data-driven battery health estimation technology for battery management system. Neurocomputing 2023.
-
[3] Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015.
-
[4] Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Alvi, M.J.; Kim, H.-J. Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation. Energies 2019, 12, 446.
-
[5] Ardeshiri, R.R.; Balagopal, B.; Alsabbagh, A.; Ma, C.; Chow, M.-Y. Machine learning approaches in battery management systems: State of the art: Remaining useful life and fault detection. In Proceedings of the 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Cagliari, Italy, 1–3 Sept 2020.
-
[6] Gu, X.; See, K.; Li, P.; Shan, K.; Wang, Y.; Zhao, L.; Lim, K.C.; Zhang, N. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model. Energy 2023, 262, 125501.
-
[7] Li, P.; Zhang, Z.; Grosu, R.; Deng, Z.; Hou, J.; Rong, Y.; Wu, R. An end-to-end neural network framework for state-of-health estimation and remaining useful life prediction of electric vehicle lithium batteries. Renew. Sustain. Energy Rev. 2022, 156, 111843.
-
[8] Ma, G.; Xu, S.; Jiang, B.; Cheng, C.; Yang, X.; Shen, Y.; Yang, T.; Huang, Y.; Ding, H.; Yuan, Y. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning. Energy Environ. Sci. 2022, 15, 4083–4094.
-
[9] Fan, Y.; Xiao, F.; Li, C.; Yang, G.; Tang, X. A novel deep learning framework for state of health estimation of lithium-ion battery. J. Energy Storage 2020, 32, 101741.
-
[10] Zhou, D.; Li, Z.; Zhu, J.; Zhang, H.; Hou, L. State of health monitoring and remaining useful life prediction of lithium-ion batteries based on temporal convolutional network. IEEE Access 2020, 8, 53307–53320.
-
[11] Li, P.; Zhang, Z.; Xiong, Q.; Ding, B.; Hou, J.; Luo, D.; Rong, Y.; Li, S. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short-term memory neural network. J. Power Sources 2020, 459, 228069.
-
[12] Liu, K.; Kang, L.; Xie, D. Online state of health estimation of lithium-ion batteries based on charging process and long short-term memory recurrent neural network. Batteries 2023, 2, 94.
-
[13] Ma, Y.; Shan, C.; Gao, J.; Chen, H. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. Energy 2022, 251, 123973.
-
[14] Qu, J.; Liu, F.; Ma, Y.; Fan, J. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery. IEEE Access 2019, 7, 87178–87191.
-
[15] Reis, D.; Gonçalo, C.; Strange, C.; Yadav, M.; Li, S. Lithium-ion battery data and where to find it. Energy AI 2021, 5, 100081.
-
[16] Wang, H.; Li, Y.-F.; Zhang, Y. Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation. Renew. Sustain. Energy Rev. 2023, 188, 113728.
-
[17] Wang, H.; Sun, M.; Li, Y.-F. A brain-inspired spiking network framework based on multi-time-step self-attention for lithium-ion batteries capacity prediction. IEEE Trans. Consum. Electron. 2023.
-
[18] Pfeiffer, M.; Pfeil, T. Deep learning with spiking neurons: Opportunities and challenges. Front. Neurosci. 2018, 12, 774.
-
[19] Nunes, J.D.; Carvalho, M.; Carneiro, D.; Cardoso, J.S. Spiking neural networks: A survey. IEEE Access 2022, 10, 60738–60764.
-
[20] Yao, M.; Zhao, G.; Zhang, H.; Hu, Y.; Deng, L.; Tian, Y.; Xu, B.; Li, G. Attention spiking neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 2023.
-
[21] Zhang, R.; Leng, L.; Che, K.; Zhang, H.; Cheng, J.; Guo, Q.; Liao, J.; Cheng, R. Accurate and efficient event-based semantic segmentation using adaptive spiking encoder–decoder network. IEEE Trans. Neural Netw. Learn. Syst. 2024.
-
[22] Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking neural networks and their applications: A review. Brain Sci. 2022, 12, 863.
-
[23] Dey, S.; Banerjee, D.; George, A.M.; Mukherjee, A.; Pal, A. Efficient time series classification using spiking reservoir. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022.
-
[24] Bing, Z.; Meschede, C.; Röhrbein, F.; Huang, K.; Knoll, A.C. A survey of robotics control based on learning-inspired spiking neural networks. Front. Neurorobot. 2018, 12, 35.
-
[25] Prognostics Center of Excellence—Data Repository. NASA Ames Prognostics Research Center. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository (accessed on 27 August 2025).
-
[26] Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Modha, D.S. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673.
-
[27] Frenkel, C.; Lefebvre, M.; Legat, J.D.; Bol, D. A 0.086-mm² 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 145–158.
-
[28] Thakur, C.S.; Molin, J.L.; Cauwenberghs, G.; Indiveri, G.; Kumar, K.; Qiao, N.; Etienne-Cummings, R. Large-scale neuromorphic spiking array processors: A quest to mimic the brain. Front. Neurosci. 2018, 12, 891.

I. J. of Electrical & Electronics Research