Research Article | ![]()
Multi-Model Deep Feature Fusion for Robust Detection of Neuro-Oncological Abnormalities
Author(s): Yasser Nizamli1*, Anton Filatov2, Weaam Fadel3, Yulia Shichkina3, Kinda Mreish4,5, Nahida Karaja1, and Tarek Alnajar6
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 4
Publisher : FOREX Publication
Published : 15 December 2025
e-ISSN : 2347-470X
Page(s) : 802-812
Abstract
Accurate and early diagnosis of brain tumors can significantly reduce both the invasiveness and cost of therapeutic interventions while preserving neurological function. Current limitations in manual MRI analysis, including human error, variability in expertise, and interpretive inconsistencies, have created a pressing need for advanced diagnostic systems based on artificial intelligence and deep learning techniques. This study presents a hybrid transfer learning approach designed to enhance the detection of neuro-oncological abnormalities. Our methodology employs parallel processing of MRI images through pre-trained DenseNet121 and VGG16 architectures to extract discriminative numerical features. These feature sets are integrated and then processed through principal component analysis to improve computational efficiency. For the classification stage, we implement both support vector machine and k-nearest neighbors algorithms independently. A comprehensive evaluation, including an analysis of data processing sequences to ensure methodological rigor, demonstrates that the proposed feature fusion framework achieves robust performance and competitive accuracy, exceeding the performance of several contemporary deep learning models in this domain.
Keywords: Anomaly detection, Brain tumors, Medical Imaging, MRI Images, Deep learning, Feature fusion.
Yasser Nizamli*, Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia; Department of Computer Engineering and Automatic Control, Latakia University, Latakia, Syria; Email: yanizamli@stud.etu.ru
Anton Filatov, Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
Weaam Fadel, Department of Computer Engineering, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
Yulia Shichkina, Department of Computer Engineering, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
Kinda Mreish, Department of Computer Engineering, Aleppo University, Aleppo, Syria; Department of Information Systems, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
Nahida Karaja, Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
Tarek Alnajar, Department of Automatic Control Systems, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
-
[1] Huang, T.; Yin, X.; Jiang, E. Decision-making in clinical diagnostic for brain tumor detection based on advanced machine learning algorithm. International Journal for Simulation and Multidisciplinary Design Optimization (IJSMDO) 2025, Volume 16, Issue 1. DOI: 10.1051/smdo/2024021.
-
[2] Perkins, A.; Liu, G. Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician 2016, Volume 93, Issue 3, pp. 211–217. PMID: 26926614.
-
[3] Barkade, G.; Bhosale, P.; Shirsath, S. Overview of brain cancer, its symptoms, diagnosis and treatment. IP International Journal of Comprehensive and Advanced Pharmacology 2023, Volume 8, Issue 3, pp. 159–164. DOI: 10.18231/j.ijcaap.2023.027.
-
[4] Alther, B.; Mylius, V.; Weller, M.; Gantenbein, A. From first symptoms to diagnosis: Initial clinical presentation of primary brain tumors. Clinical and Translational Neuroscience 2020, Volume 4, Issue 2. DOI: 10.1177/2514183X20968368.
-
[5] Kang, J.; Ullah, Z.; Gwak, J. MRI-Based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 2021, Volume 21, Issue 6. DOI: 10.3390/s21062222.
-
[6] Abda, O.; Naimi, H. Enhanced brain tumor MRI classification using stationary wavelet transform, ResNet50V2, and LSTM networks. ITEGAM-JETIA 2025, Volume 11, Issue 51, pp. 127–133. DOI: 10.5935/jetia.v11i51.1457.
-
[7] Nizamli, Y.; Filatov, A.; Fadel, W.; Shichkina, Yu. Accurate anomaly detection in medical images using transfer learning and data optimization: MRI and CT as case studies. 2024 V International Conference on Neural Networks and Neurotechnologies (NeuroNT), Saint Petersburg, Russia, 2024, pp. 170–173. DOI: 10.1109/NeuroNT62606.2024.10585603.
-
[8] Alahmed, H.; Al-Suhail, G. Exploring transfer learning techniques for brain tumor diagnosis in MRI data. 2024 1st International Conference on Emerging Technologies for Dependable Internet of Things (ICETI), Sana'a, Yemen, 2024, pp. 1–8. DOI: 10.1109/ICETI63946.2024.10777184.
-
[9] Bouguerra, O.; Attallah, B.; Brik, Y. MRI-based brain tumor ensemble classification using two stage score level fusion and CNN models. Egyptian Informatics Journal 2024, Volume 28. DOI: 10.1016/j.eij.2024.100565.
-
[10] Biswas, A.; Islam, M. S. A hybrid deep CNN-SVM approach for brain tumor classification. Journal of Information Systems Engineering and Business Intelligence 2023, Volume 9, pp. 1–15. DOI: 10.20473/jisebi.9.1.1-15.
-
[11] Jaspin, K.; Selvan, S. Multiclass convolutional neural network-based classification for the diagnosis of brain MRI images. Biomedical Signal Processing and Control 2023, Volume 83. DOI: 10.1016/j.bspc.2022.104542.
-
[12] Sowrirajan, S. R.; Balasubramanian, S. Brain tumor classification using machine learning and deep learning algorithms. International Journal of Electrical and Electronics Research 2022, Volume 10, pp. 999–1004. DOI: 10.37391/IJEER.100441.
-
[13] Agrawal, T.; Choudhary, P.; Shankar, A.; Singh, P.; Diwakar, M. MultiFeNet: Multi-scale feature scaling in deep neural network for the brain tumour classification in MRI images. Int J Imaging Syst Technol 2024. Volume 34, Issue 1. DOI: 10.1002/ima.22956.
-
[14] Noreen, N.; Palaniappan, S.; Qayyum, A.; Ahmad, I.; Alassafi, M. O. Brain Tumor Classification Based on Fine-Tuned Models and the Ensemble Method. Computers, Materials & Continua 2021, Volume 67, Issue 3, pp. 3967–3982. DOI: 10.32604/cmc.2021.014158.
-
[15] Khan, S. U. R.; Zhao, M.; Asif, S.; Chen, X. Hybrid-NET: A fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. International Journal of Imaging Systems and Technology 2024, Volume 34, Issue 1. DOI: 10.1002/ima.22975.
-
[16] Passa, R. S.; Nurmaini, S.; Rini, D. P. YOLOv8 based on data augmentation for MRI brain tumor detection. Scientific Journal of Informatics 2023. Volume 10, Issue 3. DOI: 10.15294/sji.v10i3.45361.
-
[17] Muksimova, S.; Umirzakova, S.; Mardieva, S.; Iskhakova, N.; Sultanov, M.; Cho, Y. I. A lightweight attention-driven YOLOv5m model for improved brain tumor detection. Computers in Biology and Medicine 2025, Volume 188. DOI: 10.1016/j.compbiomed.2025.109893.
-
[18] Salakapuri, R.; Terlapu, P. V.; Kalidindi, K. R.; Balaka, R. N.; Jayaram, D.; Ravikumar , T. Intelligent brain tumor detection using hybrid finetuned deep transfer features and ensemble machine learning algorithms. Scientific Reports 2025, Volume 15. DOI: 10.1038/s41598-025-08689-6.
-
[19] Nagaraju, G.; Gujjeti, S.; Varaprasad Rao, M.; Patil, A.; Yamsani, N. Deep learning-driven behavioral analysis for real-time threat detection and classification in network traffic. International Journal of Electrical and Electronics Research 2025, Volume 13, Issue 1, pp. 80–88. DOI: 10.37391/IJEER.130112.
-
[20] Malik, H.; Anees, T.; Khalil, W.; Alharthi, S. Z.; Al-Shamaylehs, A. S.; khunzada, A. Deep learning-based classification of chest diseases using X-rays, CT scans, and cough sound images 2023, Volume 13, Issue 17. DOI: 10.3390/diagnostics13172772.
-
[21] Merlin, R. T.; Ravi, R. Empowering smart city IoT network intrusion detection with advanced ensemble learning-based feature selection 2024, Volume 12, Issue 2, pp. 367–374. 10.37391/IJEER.120206.
-
[22] Figshare brain tumor dataset. Available online: https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5 (accessed 08.01.2025).
-
[23] Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015. DOI: 10.48550/arXiv.1409.1556.
-
[24] Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K. Q. Densely Connected Convolutional Networks. . arXiv 2017. DOI: 10.48550/arXiv.1608.06993.
-
[25] Belal, M.; Hassan, T.; Hassan, A.; Alsheikh, N.; Elhendawi, N.; Hussain, I. Integrating features for recognizing human activities through optimized parameters in graph convolutional networks and transformer architectures. 2024 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Perth, Australia, 2024, pp. 449-453. DOI: 10.1109/DICTA63115.2024.00072.
-
[26] Zhang, T.; Fan, S.; Hu, J.; Guo, X.; Li, Q.; Zhang, Y.; Wulamu, A. A feature fusion method with guided training for classification tasks, Computational Intelligence and Neuroscience 2021, Volume 2021, Issue 1. DOI: 10.1155/2021/6647220.
-
[27] Han, H.; Wang, WY.; Mao, BH. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. 2005 International Conference on Intelligent Computing (ICIC), Hefei, China, 2005, pp. 878-887. DOI: 10.1007/11538059_91.
-
[28] Alyabrodi, A.; Al-Daja, S.; Injadat, M.; Moubayed, A.; Elrashidi, A. Evaluation of chest CT-scan anomaly detection models using principal component analysis. 2024 25th International Arab Conference on Information Technology (ACIT), Zarqa, Jordan, 2024, pp. 1-6. DOI: 10.1109/ACIT62805.2024.10877172.
-
[29] Nizamli, Y.; Filatov, A. On the validity of public MRI datasets for neuro-oncological abnormality detection and classification: a forensic audit. TechRxiv 2025. DOI: 10.36227/techrxiv.176287946.66170971/v1.

I. J. of Electrical & Electronics Research