FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Non-invasive and Automatic Identification of Diabetes Using ECG Signals

Author(s): Anuja Jain1*, Anurag Verma2 and Amit Kumar Verma3

Publisher : FOREX Publication

Published : 15 June 2023

e-ISSN : 2347-470X

Page(s) : 418-425




Anuja Jain*, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, 244001 India; Email: anuja.scholar@tmu.ac.in

Anurag Verma, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, 244001 India; Email: principal.pharmacy@tmu.ac.in

Amit Kumar Verma, Department of Pharmacy, Mahatama Jyotiba Phule Rohilkhand University, Bareilly, UP, 243006 India; Email: amit.verma@mjpru.ac.in

    [1] Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JC, Mbanya JC, Pavkov ME. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice. 2021 Dec 6:109119. [Cross Ref]
    [2] Hippisley-Cox J, Coupland C. Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: open cohort study in primary care. BMJ. 2016 Mar 30; 352: i1450. doi: 10.1136/bmj.i1450. PMID: 27029547; PMCID: PMC4816603. [Cross Ref]
    [3] Liang, Y.M.D.;Wanderer, J.M.D.M.; Nichols, J.H.P.; Klonoff, D.M.D.F.; Rice, M.J.M.D. Blood Gas Analyzer Accuracy of Glucose Measurements. Mayo Clin. Proc. 2017, 92, 1030^a¿\1041. [Cross Ref]
    [4] McMillin, J.M. Blood Glucose. In Clinical Methods: The History, Physical and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworth-Heinemann: Boston, MA, USA, 1990.
    [5] Delost, M.E. Blood Gas and Critical Care Analyte Analysis. In Equipment for Respiratory Care; Volsko, T.A., Chatburn, R.L., El-Khatib, M.F., Eds.; Jones and Bartlett Publishers, Inc.: Sudbury, MA, USA, 2014.
    [6] Burrin, J.M.; Price, C.P. Measurement of Blood Glucose. Ann. Clin. Biochem.1985, 22, 327-342. [Cross Ref]
    [7] Dalvi, N. Glucose meter reference design. In Application Note Nr. 1560; Microchip Technology Inc.: Chandler, AZ, USA, 2013.
    [8] Gjessing, H. J., L. E. Matzen, O. K. Faber, and A. FrA¸land. Fasting plasma C-peptide, glucagon stimulated plasma C-peptide, and urinary Cpeptide in relation to clinical type of diabetes Diabetologia 32 (5);1989:305-311. [Cross Ref]
    [9] Foteinopoulou, Evgenia, Catriona AL Clarke, Rebecca J. Pattenden, Stuart A. Ritchie, Emily M. McMurray, Rebecca M. Reynolds, Ganesan Arunagirinathan, Fraser W. Gibb, John A. McKnight, and Mark WJ Strachan. Impact of routine clinic measurement of serum C-peptide in people with a clinician diagnosis of type 1 diabetes. Diabetic Medicine 38, no. 7; 2021; e14449. [Cross Ref]
    [10] Goldstein, David E., Randie R. Little, Hsiao-Mei Wiedmeyer, Jack D. England, Curt L. Rohlfing, and Alethea L. Wilke. "Is glycohemoglobin testing useful in diabetes mellitus? Lessons from the Diabetes Control and Complications Trial." Clinical Chemistry 40, no. 8;1994; 1637-1640. [Cross Ref]
    [11] Mitchai M, Suwansaksri N, Seanseeha S, Saenboonsiri J, Kraitree P, Piyapromdee J, Silsirivanit A. Misleading HbA1c Measurement in Diabetic Patients with Hemoglobin Variants. Medical Sciences. 2021 Jun;9(2):43. [Cross Ref]
    [12] Chiappin S, Antonelli G, Gatti R, De Palo EF Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383: 2007; 30-40. [Cross Ref]
    [13] Kaufman E, Lamster IB The diagnostic applications of saliva{a review. Crit Rev Oral Biol Med 13: 2002; 197-212
    [14] Agrawal, R.P., Sharma, N., Rathore, M.S., Gupta, V.B., Jain, S., Agarwal, V. and Goyal, S., 2013. Noninvasive method for glucose level estimation by saliva. J Diabetes Metab, 4(5), p.266.
    [15] Amer, S., Yousuf, M.U.N.I., Siddqiui, P.Q. and Alam, J., 2001. Salivary glucose concentrations in patients with diabetes mellitus^a¿\a minimally invasive technique for monitoring blood glucose levels.Pak J Pharm Sci, 14(1), pp.33-7.
    [16] McShane, M.; Stein, E. Fluorescence-Based Glucose Sensors. In In Vivo Glucose Sensing; Cunningham, D.D.,Stenken, J.A., Eds.; John Wiley& Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 174, pp. 269-316. [Cross Ref]
    [17] Malik, B.H.; CotA~©, G.L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring.J. Biomed.Opt. 2010, 15, 017002. [Cross Ref]
    [18] Rawer, R.; Stork,W.; Kreiner, C.F. Non-invasive polarimetric measurement of glucose concentration in theanterior chamber of the eye. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 1017-1023. [Cross Ref]
    [19] Shu T, Zhang B, Tang YY. An improved noninvasive method to detect Diabetes Mellitus using the Probabilistic Collaborative Representation based Classifier. Information Sciences. 2018 Oct 1; 467: 477-88. [Cross Ref]
    [20] Kim, S., Cho, J., Ku, B., Jun, M., Kim, G., Yoo, H., Park, S. and Kim, J.U., 2019. Variability of electrochemical skin conductance for screening diabetes mellitus. Biomedical Engineering Letters, 9(2), pp.267-274. [Cross Ref]
    [21] Howlader, K.C., Satu, M.S., Awal, M.A., Islam, M.R., Islam, S.M.S., Quinn, J.M. and Moni, M.A., 2022. Machine learning models for classification and identification of significant attributes to detect type 2 diabetes. Health information science and systems, 10(1), p.2. [Cross Ref]
    [22] Maniruzzaman, M., Rahman, M.J., Ahammed, B. and Abedin, M.M., 2020. Classification and prediction of diabetes disease using machine learning paradigm. Health information science and systems, 8, pp.1-14. [Cross Ref]
    [23] Acharya U.R., Faust, O., Kadri, N.A., Suri, J.S., Yu, W. Automated identification of normal and diabetes heart rate signals using nonlinear measures, Comput. Biol. Med. 43 (10) (2013) 1523-1529 2013. [Cross Ref]
    [24] Shashikant, R., Chaskar, U., Phadke, L. and Patil, C., 2021. Gaussian process-based kernel as a diagnostic model for prediction of type 2 diabetes mellitus risk using non-linear heart rate variability features. Biomedical Engineering Letters, 11(3), pp.273-286. [Cross Ref]
    [25] K. Gupta, V. Bajaj, A robust framework for automated screening of diabetic patient using ecg signals, IEEE Sensors Journal 22 (24) (2022) 24222-24229. [Cross Ref]
    [26] Patel, P. R, Annavarapu, R.N. EEG-based human emotion recognition using entropy as a feature extraction measure. Brain Inf. 8, 20 (2021). [Cross Ref]
    [27] Lin Y.P. et al., EEG-based emotion recognition in music listening, IEEE Trans. Biomed. Eng., vol. 57, no. 7, pp. 1798-1806, Jul. 2010. [Cross Ref]
    [28] Swain P.H. and Hauska H., The decision tree classifier: Design and potential, IEEE Trans. Geosci. Electron., vol. GE-15, no. 3, pp. 142{147, Jul. 1977. [Cross Ref]
    [29] Rish, Irina. An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence, vol. 3, no. 22, pp. 41-46. 2001.
    [30] Acharya, UR, Faust, O. Sree, S. V., Ghista, D. N. Dua, S. Joseph, P. Ahamed, V. T., Janarthanan, N., Tamura T., An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes, Computer methods in biomechanics and biomedical engineering 16 (2) (2013) 222{234}. [Cross Ref]
    [31] Jian, L. W, Lim T.C., Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals, Journal of medical imaging and health informatics 3 (3) (2013) 440-447. [Cross Ref]
    [32] Mercaldo F., Nardone V., Santone A., Diabetes mellitus affected patients classification and diagnosis through machine learning techniques, Procedia computer science 112 (2017) 2519-2528. [Cross Ref]

Anuja Jain, Anurag Verma and Amit Kumar Verma (2023), Non-invasive and Automatic Identification of Diabetes Using ECG Signals. IJEER 11(2), 418-425. DOI: 10.37391/IJEER.110223.