Research Article |
Improved Magnetic Resonance Image Reconstruction using Compressed Sensing and Adaptive Multi Extreme Particle Swarm Optimization Algorithm
Author(s): Moureen Nalumansi*, Elijah Mwangi and George Kamucha
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 2
Publisher : FOREX Publication
Published : 30 April 2024
e-ISSN : 2347-470X
Page(s) : 393-402
Abstract
One powerful technique that can offer a thorough examination of the body's internal structure is magnetic resonance imaging (MRI). MRI's lengthy acquisition times, however, may restrict its clinical usefulness, particularly in situations where time is of the essence. Compressed sensing (CS) has emerged as a potentially useful method for cutting down on MRI acquisition times; nevertheless, the effectiveness of CS-MRI is dependent on the selection of the sparsity-promoting algorithm and sampling scheme. This research paper presents a novel method based on adaptive multi-extreme particle swarm optimization (AMEPSO) and dual tree complex wavelet transform (DTCWT) for fast image acquisition in magnetic resonance. The method uses AMEPSO in order to maximize the sampling pattern and minimize reconstruction error, while also exploiting the sparsity of MR images in the DTCWT domain to improve directional selectivity and shift invariance. MATLAB software was used for simulation of the proposed method. In comparison with the particle swarm optimized-DTCWT (PSODTCWT) and DTCWT algorithms, respectively, the results demonstrated an improvement in the peak signal-to-noise ratio of 8.92% and 15.92% and a higher structural similarity index measure of 3.69% and 7.5%. Based on these improvements, the proposed method could potentially make high-quality, real-time MRI imaging possible, which might improve detection and treatment of medical conditions and increase the throughput of MRI machines.
Keywords: Compressed sensing
, Dual Tree Complex Wavelet Transform
, Particle Swarm Optimization
, Magnetic Resonance Imaging
.
Moureen Nalumansi*, Department of Electrical Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya; Email: moureen.nalumansi@students.jkuat.ac.ke
Elijah Mwangi, Faculty of Engineering, University of Nairobi, Kenya; Email: elijah.mwangi@uonbi.ac.ke
George Kamucha, Faculty of Engineering, University of Nairobi, Kenya; Email: gkamucha@uonbi.ac.ke
-
[1] P. Wangaryattawanich, A. M. Rutman, S. Petcharunpaisan, and M. Mossa-Basha, “Incidental findings on brain magnetic resonance imaging (MRI) in adults: a review of imaging spectrum, clinical significance, and management,” The British Journal of Radiology, vol. 96, no. 1142, Feb. 2023, doi: 10.1259/bjr.20220108. [CrossRef]
-
[2] M. A. G. Duff, I. J. A. Simpson, M. J. Ehrhardt, and N. D. F. Campbell, “VAEs with structured image covariance applied to compressed sensing MRI,” Physics in Medicine and Biology, vol. 68, no. 16, 2023, doi: 10.1088/1361-6560/ace49a. [CrossRef]
-
[3] V. M. Runge, J. K. Richter, and J. T. Heverhagen, “Speed in Clinical Magnetic Resonance,” Investigative Radiology, vol. 52, no. 1, pp. 1–17, 2017, doi: 10.1097/RLI.0000000000000330. [CrossRef]
-
[4] D. S. Taubman and M. W. Marcellin, “JPEG2000: Standard for interactive imaging,” Proceedings of the IEEE, vol. 90, no. 8, pp. 1336–1357, Aug. 2002, doi: 10.1109/JPROC.2002.800725. [CrossRef]
-
[5] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006, doi: 10.1109/TIT.2006.871582. [CrossRef]
-
[6] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006, doi: 10.1109/TIT.2005.862083. [CrossRef]
-
[7] G. Yiasemis, C. I. Sánchez, J.-J. Sonke, and J. Teuwen, “On retrospective k-space subsampling schemes for deep MRI reconstruction,” Magnetic Resonance Imaging, vol. 107, no. 1, pp. 33–46, Apr. 2024, doi: 10.1016/j.mri.2023.12.012. [CrossRef]
-
[8] D. Singh, A. Monga, H. L. de Moura, X. Zhang, M. V. W. Zibetti, and R. R. Regatte, “Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review,” Bioengineering, vol. 10, no. 9, p. 1012, Aug. 2023, doi: 10.3390/bioengineering10091012. [CrossRef]
-
[9] M. Gammoudi, C. Scheunert, G. T. Nguyen, and F. Fitzek, “Practical construction of sensing matrices for a greedy sparse recovery algorithm over finite fields,” in 2023 Data Compression Conference (DCC), Snowbird, Utah, USA: IEEE, Mar. 2023, pp. 120–129. doi: 10.1109/DCC55655.2023.00020. [CrossRef]
-
[10] L. Feng, T. Benkert, K. T. Block, D. K. Sodickson, R. Otazo, and H. Chandarana, “Compressed sensing for body MRI,” Journal of Magnetic Resonance Imaging, vol. 45, no. 4, pp. 966–987, Apr. 2017, doi: 10.1002/jmri.25547. [CrossRef]
-
[11] T. Tashan and A. K. Kadhim, “Particle swarm optimization based multilevel MRI compression using compressive sensing,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2621–2628, 2022, doi: 10.11591/eei.v11i5.3873. [CrossRef]
-
[12] E. U. Haq, H. Jianjun, X. Huarong, and K. Li, “Block-based compressed sensing of MR images using multi-rate deep learning approach,” Complex and Intelligent Systems, vol. 7, no. 5, pp. 2437–2451, 2021, doi: 10.1007/s40747-021-00426-6. [CrossRef]
-
[13] M. Ragab, O. A. Omer, and M. Abdel-Nasser, “Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer,” Neural Computing and Applications, vol. 32, no. 7, pp. 2705–2724, 2020, doi: 10.1007/s00521-018-3812-7. [CrossRef]
-
[14] M. Ragab, O. A. Omer, and H. S. Hussien, “Compressive sensing MRI using dual tree complex wavelet transform with wavelet tree sparsity,” in 2017 34th National Radio Science Conference (NRSC), Alexandria, Egypt: IEEE, Mar. 2017, pp. 481–486. doi: 10.1109/NRSC.2017.7893519. [CrossRef]
-
[15] L. Xiao, Y. Liu, Z. Yi, Y. Zhao, L. Xie, and P. Cao, “Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks,” Magnetic Resonance in Medicine, vol. 87, no. 2, pp. 999–1014, Feb. 2022, doi: 10.1002/mrm.29033. [CrossRef]
-
[16] J. Zhang, F. Najeeb, X. Wang, P. Xu, H. Omer, and J. Zheng, “Improved Dynamic Contrast-Enhanced MRI Using Low Rank With Joint Sparsity,” IEEE Access, vol. 10, no. November 2022, pp. 121193–121203, 2022, doi: 10.1109/ACCESS.2022.3222313. [CrossRef]
-
[17] S. Guruprasad, S. H. Bharathi, and D. Anto Ramesh Delvi, “Effective compressed sensing MRI reconstruction via hybrid GSGWO algorithm,” Journal of Visual Communication and Image Representation, vol. 80, p. 103274, Oct. 2021, doi: 10.1016/j.jvcir.2021.103274. [CrossRef]
-
[18] Y. Xie and Q. Li, “A Review of Deep Learning Methods for Compressed Sensing Image Reconstruction and Its Medical Applications,” Electronics, vol. 11, no. 4, p. 586, Feb. 2022, doi:10.3390/electronics11040586. [CrossRef]
-
[19] J. Lang, C. Zhang, and D. Zhu, “Undersampled MRI reconstruction based on spectral graph wavelet transform,” Computers in Biology and Medicine, vol. 157, no. 2, p. 106780, May 2023, doi: 10.1016/j.compbiomed.2023.106780. [CrossRef]
-
[20] T. Hermans, K. Carkeek, A. Dereymaeker, K. Jansen, G. Naulaers, and S. Van Huffel, “Partial wavelet coherence as a robust method for assessment of neurovascular coupling in neonates with hypoxic ischemic encephalopathy,” Scientific Reports, vol. 13, no. 1, p. 457, Jan. 2023, doi: 10.1038/s41598-022-27275-8. [CrossRef]
-
[21] Q. Chen, N. J. Shah, and W. A. Worthoff, “Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects,” Journal of Magnetic Resonance Imaging, vol. 55, no. 5, pp. 1340–1356, May 2022, doi: 10.1002/jmri.28029. [CrossRef]
-
[22] J. Huang, L. Wang, and Y. Zhu, “Compressed Sensing MRI Reconstruction with Multiple Sparsity Constraints on Radial Sampling,” Mathematical Problems in Engineering, vol. 2019, 2019, doi: 10.1155/2019/3694604. [CrossRef]
-
[23] D. Qiu, Y. Cheng, and X. Wang, “Progressive Feedback Residual Attention Network for Cardiac Magnetic Resonance Imaging Super-Resolution,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 7, pp. 3478–3488, Jul. 2023, doi: 10.1109/JBHI.2023.3272155. [CrossRef]
-
[24] S. Geethanath and J. T. Vaughan, “Accessible magnetic resonance imaging: A review,” Journal of Magnetic Resonance Imaging, vol. 49, no. 7, pp. e65–e77, 2019, doi: 10.1002/jmri.26638. [CrossRef]
-
[25] C. Baishya, R. N. Premakumari, M. E. Samei, and M. K. Naik, “Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller,” Chaos, Solitons & Fractals, vol. 174, no. 3, p. 113773, Sep. 2023, doi: 10.1016/j.chaos.2023.113773. [CrossRef]
-
[26] B. Vasudeva, P. Deora, S. Bhattacharya, and P. M. Pradhan, “Compressed Sensing MRI Reconstruction with Co-VeGAN: Complex-Valued Generative Adversarial Network,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA: IEEE, Jan. 2022, pp. 1779–1788. doi: 10.1109/WACV51458.2022.00184. [CrossRef]
-
[27] B. P. P. Kumar, P. K. B. Rangaiah, and R. Augustine, “Enhancing Medical Image Reclamation for Chest Samples Using B-Coefficients, DT-CWT and EPS Algorithm,” IEEE Access, vol. 11, pp. 113360–113375, 2023, doi: 10.1109/ACCESS.2023.3322205. [CrossRef]
-
[28] E. Hancer and A. Subasi, “EEG-based emotion recognition using dual tree complex wavelet transform and random subspace ensemble classifier,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 26, no. 14, pp. 1772–1784, Oct. 2023, doi: 10.1080/10255842.2022.2143714. [CrossRef]
-
[29] D. Wu, L. Li, J. Wang, P. Ma, Z. Wang, and H. Wu, “Robust zero-watermarking scheme using DT CWT and improved differential entropy for color medical images,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 8, p. 101708, Sep. 2023, doi: 10.1016/j.jksuci.2023.101708. [CrossRef]
-
[30] D. Bhonsle, A. G. Pillai, T. Rizvi, R. Mishra, A. K. Sahu, and R. Mishra, “White Gaussian Noise Removal From Computed Tomography Images Using Python,” in 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India: IEEE, Jan. 2024, pp. 1–5. doi: 10.1109/ICAECT60202.2024.10468832. [CrossRef]
-
[31] B. Qu, Z. Zhang, Y. Chen, C. Qian, and T. Kang, “A convergence analysis for projected fast iterative soft-thresholding algorithm under radial sampling MRI,” Journal of Magnetic Resonance, vol. 351, p. 107425, Jun. 2023, doi: 10.1016/j.jmr.2023.107425. [CrossRef]
-
[32] Y. Li, Z. Li, K. Wei, W. Xiong, J. Yu, and B. Qi, “Noise estimation for image sensor based on local entropy and median absolute deviation,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi: 10.3390/s19020339. [CrossRef]
-
[33] L. Zhu, M. Liu, and W. H. Shao, “MMW compressed sensing target reconstruction based on AMPSO search algorithm,” Journal of Electromagnetic Waves and Applications, vol. 34, no. 16, pp. 2094–2106, 2020, doi: 10.1080/09205071.2020.1809018. [CrossRef]
-
[34] Y. Song, Y. Liu, H. Chen, and W. Deng, “A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem,” Electronics (Switzerland), vol. 12, no. 3, 2023, doi: 10.3390/electronics12030491. [CrossRef]
-
[35] C. Qin, Y. Zhang, F. Bao, C. Zhang, P. Liu, and P. Liu, “XGBoost optimized by adaptive particle swarm optimization for credit scoring,” Mathematical Problems in Engineering, vol. 2021, 2021, doi: 10.1155/2021/6655510. [CrossRef]
-
[36] T. Foster and B. Di Muzio, “Normal MRI Brain,” in Radiopaedia.org, Radiopaedia.org, 2015. doi: 10.53347/rID-39311.
-
[37] Siemens Healthineers, “Magnetic resonance imaging-Magnetom World.” Accessed: May 23, 2023. [Online]. Available: https://www.magnetomworld.siemens-healthineers.com/clinical-corner/protocols/dicom-images.