FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Improved Magnetic Resonance Image Reconstruction using Compressed Sensing and Adaptive Multi Extreme Particle Swarm Optimization Algorithm

Author(s): Moureen Nalumansi*, Elijah Mwangi and George Kamucha

Publisher : FOREX Publication

Published : 30 April 2024

e-ISSN : 2347-470X

Page(s) : 393-402




Moureen Nalumansi*, Department of Electrical Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya; Email: moureen.nalumansi@students.jkuat.ac.ke

Elijah Mwangi, Faculty of Engineering, University of Nairobi, Kenya; Email: elijah.mwangi@uonbi.ac.ke

George Kamucha, Faculty of Engineering, University of Nairobi, Kenya; Email: gkamucha@uonbi.ac.ke

    [1] P. Wangaryattawanich, A. M. Rutman, S. Petcharunpaisan, and M. Mossa-Basha, “Incidental findings on brain magnetic resonance imaging (MRI) in adults: a review of imaging spectrum, clinical significance, and management,” The British Journal of Radiology, vol. 96, no. 1142, Feb. 2023, doi: 10.1259/bjr.20220108. [CrossRef]
    [2] M. A. G. Duff, I. J. A. Simpson, M. J. Ehrhardt, and N. D. F. Campbell, “VAEs with structured image covariance applied to compressed sensing MRI,” Physics in Medicine and Biology, vol. 68, no. 16, 2023, doi: 10.1088/1361-6560/ace49a. [CrossRef]
    [3] V. M. Runge, J. K. Richter, and J. T. Heverhagen, “Speed in Clinical Magnetic Resonance,” Investigative Radiology, vol. 52, no. 1, pp. 1–17, 2017, doi: 10.1097/RLI.0000000000000330. [CrossRef]
    [4] D. S. Taubman and M. W. Marcellin, “JPEG2000: Standard for interactive imaging,” Proceedings of the IEEE, vol. 90, no. 8, pp. 1336–1357, Aug. 2002, doi: 10.1109/JPROC.2002.800725. [CrossRef]
    [5] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006, doi: 10.1109/TIT.2006.871582. [CrossRef]
    [6] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006, doi: 10.1109/TIT.2005.862083. [CrossRef]
    [7] G. Yiasemis, C. I. Sánchez, J.-J. Sonke, and J. Teuwen, “On retrospective k-space subsampling schemes for deep MRI reconstruction,” Magnetic Resonance Imaging, vol. 107, no. 1, pp. 33–46, Apr. 2024, doi: 10.1016/j.mri.2023.12.012. [CrossRef]
    [8] D. Singh, A. Monga, H. L. de Moura, X. Zhang, M. V. W. Zibetti, and R. R. Regatte, “Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review,” Bioengineering, vol. 10, no. 9, p. 1012, Aug. 2023, doi: 10.3390/bioengineering10091012. [CrossRef]
    [9] M. Gammoudi, C. Scheunert, G. T. Nguyen, and F. Fitzek, “Practical construction of sensing matrices for a greedy sparse recovery algorithm over finite fields,” in 2023 Data Compression Conference (DCC), Snowbird, Utah, USA: IEEE, Mar. 2023, pp. 120–129. doi: 10.1109/DCC55655.2023.00020. [CrossRef]
    [10] L. Feng, T. Benkert, K. T. Block, D. K. Sodickson, R. Otazo, and H. Chandarana, “Compressed sensing for body MRI,” Journal of Magnetic Resonance Imaging, vol. 45, no. 4, pp. 966–987, Apr. 2017, doi: 10.1002/jmri.25547. [CrossRef]
    [11] T. Tashan and A. K. Kadhim, “Particle swarm optimization based multilevel MRI compression using compressive sensing,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2621–2628, 2022, doi: 10.11591/eei.v11i5.3873. [CrossRef]
    [12] E. U. Haq, H. Jianjun, X. Huarong, and K. Li, “Block-based compressed sensing of MR images using multi-rate deep learning approach,” Complex and Intelligent Systems, vol. 7, no. 5, pp. 2437–2451, 2021, doi: 10.1007/s40747-021-00426-6. [CrossRef]
    [13] M. Ragab, O. A. Omer, and M. Abdel-Nasser, “Compressive sensing MRI reconstruction using empirical wavelet transform and grey wolf optimizer,” Neural Computing and Applications, vol. 32, no. 7, pp. 2705–2724, 2020, doi: 10.1007/s00521-018-3812-7. [CrossRef]
    [14] M. Ragab, O. A. Omer, and H. S. Hussien, “Compressive sensing MRI using dual tree complex wavelet transform with wavelet tree sparsity,” in 2017 34th National Radio Science Conference (NRSC), Alexandria, Egypt: IEEE, Mar. 2017, pp. 481–486. doi: 10.1109/NRSC.2017.7893519. [CrossRef]
    [15] L. Xiao, Y. Liu, Z. Yi, Y. Zhao, L. Xie, and P. Cao, “Partial Fourier reconstruction of complex MR images using complex‐valued convolutional neural networks,” Magnetic Resonance in Medicine, vol. 87, no. 2, pp. 999–1014, Feb. 2022, doi: 10.1002/mrm.29033. [CrossRef]
    [16] J. Zhang, F. Najeeb, X. Wang, P. Xu, H. Omer, and J. Zheng, “Improved Dynamic Contrast-Enhanced MRI Using Low Rank With Joint Sparsity,” IEEE Access, vol. 10, no. November 2022, pp. 121193–121203, 2022, doi: 10.1109/ACCESS.2022.3222313. [CrossRef]
    [17] S. Guruprasad, S. H. Bharathi, and D. Anto Ramesh Delvi, “Effective compressed sensing MRI reconstruction via hybrid GSGWO algorithm,” Journal of Visual Communication and Image Representation, vol. 80, p. 103274, Oct. 2021, doi: 10.1016/j.jvcir.2021.103274. [CrossRef]
    [18] Y. Xie and Q. Li, “A Review of Deep Learning Methods for Compressed Sensing Image Reconstruction and Its Medical Applications,” Electronics, vol. 11, no. 4, p. 586, Feb. 2022, doi:10.3390/electronics11040586. [CrossRef]
    [19] J. Lang, C. Zhang, and D. Zhu, “Undersampled MRI reconstruction based on spectral graph wavelet transform,” Computers in Biology and Medicine, vol. 157, no. 2, p. 106780, May 2023, doi: 10.1016/j.compbiomed.2023.106780. [CrossRef]
    [20] T. Hermans, K. Carkeek, A. Dereymaeker, K. Jansen, G. Naulaers, and S. Van Huffel, “Partial wavelet coherence as a robust method for assessment of neurovascular coupling in neonates with hypoxic ischemic encephalopathy,” Scientific Reports, vol. 13, no. 1, p. 457, Jan. 2023, doi: 10.1038/s41598-022-27275-8. [CrossRef]
    [21] Q. Chen, N. J. Shah, and W. A. Worthoff, “Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects,” Journal of Magnetic Resonance Imaging, vol. 55, no. 5, pp. 1340–1356, May 2022, doi: 10.1002/jmri.28029. [CrossRef]
    [22] J. Huang, L. Wang, and Y. Zhu, “Compressed Sensing MRI Reconstruction with Multiple Sparsity Constraints on Radial Sampling,” Mathematical Problems in Engineering, vol. 2019, 2019, doi: 10.1155/2019/3694604. [CrossRef]
    [23] D. Qiu, Y. Cheng, and X. Wang, “Progressive Feedback Residual Attention Network for Cardiac Magnetic Resonance Imaging Super-Resolution,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 7, pp. 3478–3488, Jul. 2023, doi: 10.1109/JBHI.2023.3272155. [CrossRef]
    [24] S. Geethanath and J. T. Vaughan, “Accessible magnetic resonance imaging: A review,” Journal of Magnetic Resonance Imaging, vol. 49, no. 7, pp. e65–e77, 2019, doi: 10.1002/jmri.26638. [CrossRef]
    [25] C. Baishya, R. N. Premakumari, M. E. Samei, and M. K. Naik, “Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller,” Chaos, Solitons & Fractals, vol. 174, no. 3, p. 113773, Sep. 2023, doi: 10.1016/j.chaos.2023.113773. [CrossRef]
    [26] B. Vasudeva, P. Deora, S. Bhattacharya, and P. M. Pradhan, “Compressed Sensing MRI Reconstruction with Co-VeGAN: Complex-Valued Generative Adversarial Network,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA: IEEE, Jan. 2022, pp. 1779–1788. doi: 10.1109/WACV51458.2022.00184. [CrossRef]
    [27] B. P. P. Kumar, P. K. B. Rangaiah, and R. Augustine, “Enhancing Medical Image Reclamation for Chest Samples Using B-Coefficients, DT-CWT and EPS Algorithm,” IEEE Access, vol. 11, pp. 113360–113375, 2023, doi: 10.1109/ACCESS.2023.3322205. [CrossRef]
    [28] E. Hancer and A. Subasi, “EEG-based emotion recognition using dual tree complex wavelet transform and random subspace ensemble classifier,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 26, no. 14, pp. 1772–1784, Oct. 2023, doi: 10.1080/10255842.2022.2143714. [CrossRef]
    [29] D. Wu, L. Li, J. Wang, P. Ma, Z. Wang, and H. Wu, “Robust zero-watermarking scheme using DT CWT and improved differential entropy for color medical images,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 8, p. 101708, Sep. 2023, doi: 10.1016/j.jksuci.2023.101708. [CrossRef]
    [30] D. Bhonsle, A. G. Pillai, T. Rizvi, R. Mishra, A. K. Sahu, and R. Mishra, “White Gaussian Noise Removal From Computed Tomography Images Using Python,” in 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India: IEEE, Jan. 2024, pp. 1–5. doi: 10.1109/ICAECT60202.2024.10468832. [CrossRef]
    [31] B. Qu, Z. Zhang, Y. Chen, C. Qian, and T. Kang, “A convergence analysis for projected fast iterative soft-thresholding algorithm under radial sampling MRI,” Journal of Magnetic Resonance, vol. 351, p. 107425, Jun. 2023, doi: 10.1016/j.jmr.2023.107425. [CrossRef]
    [32] Y. Li, Z. Li, K. Wei, W. Xiong, J. Yu, and B. Qi, “Noise estimation for image sensor based on local entropy and median absolute deviation,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi: 10.3390/s19020339. [CrossRef]
    [33] L. Zhu, M. Liu, and W. H. Shao, “MMW compressed sensing target reconstruction based on AMPSO search algorithm,” Journal of Electromagnetic Waves and Applications, vol. 34, no. 16, pp. 2094–2106, 2020, doi: 10.1080/09205071.2020.1809018. [CrossRef]
    [34] Y. Song, Y. Liu, H. Chen, and W. Deng, “A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem,” Electronics (Switzerland), vol. 12, no. 3, 2023, doi: 10.3390/electronics12030491. [CrossRef]
    [35] C. Qin, Y. Zhang, F. Bao, C. Zhang, P. Liu, and P. Liu, “XGBoost optimized by adaptive particle swarm optimization for credit scoring,” Mathematical Problems in Engineering, vol. 2021, 2021, doi: 10.1155/2021/6655510. [CrossRef]
    [36] T. Foster and B. Di Muzio, “Normal MRI Brain,” in Radiopaedia.org, Radiopaedia.org, 2015. doi: 10.53347/rID-39311.
    [37] Siemens Healthineers, “Magnetic resonance imaging-Magnetom World.” Accessed: May 23, 2023. [Online]. Available: https://www.magnetomworld.siemens-healthineers.com/clinical-corner/protocols/dicom-images.

Moureen Nalumansi, Elijah Mwangi and George Kamucha (2024), Improved Magnetic Resonance Image Reconstruction using Compressed Sensing and Adaptive Multi Extreme Particle Swarm Optimization Algorithm. IJEER 12(2), 393-402. DOI: 10.37391/IJEER.120209.