Research Article |
Analysis and Optimization of 4G / LTE Network Pathloss using Particles Swarm Optimization Algorithm
Author(s): Amel Bouchemha*, Hanane Djellab and Mohamed Cherif Nait-Hamoud
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 12, Issue 2
Publisher : FOREX Publication
Published : 10 June 2024
e-ISSN : 2347-470X
Page(s) : 557-566
Abstract
This paper aims to optimize the pathloss in 4G/LTE networks obtained by empirical Radio Frequency (RF) propagation models to enhance user access quality. The radio wave propagation models are mainly used to predict the pathloss which are necessary for planning and optimizing wireless communication systems. In this paper, we propose a parametric optimization for loss estimation in a 4G/LTE network leveraging the Particle Swarm Optimization (PSO) algorithm to enhance the performances of this type of networks and decrease their complexity. For this sake, comparison and performance analysis were conducted using different environments such as urban, sub-urban and rural areas. First, we provide an analysis of radio propagation models, namely: Okumura-Hata, Stanford University Interim (SUI) and Ericsson 9999 models that would be used for outdoor propagation in LTE. Then, we optimize these empirical models using the PSO algorithm to make them more appropriate to the desired coverage area. This is achieved by minimizing the Root Mean Square Error (RMSE) between the optimized predicted data and the measured data in the field. Specifically, the measurements are taken in an urban region, as a case study, the city of Tebessa located in Algeria was selected. The proposed PSO pathloss optimization method showed better prediction performance with lower RMSE values than the analytical method based on empirical pathloss models.
Keywords: 4G/LTE
, Pathloss
, Propagation Models
, Network Coverage
, Optimization
, PSO
.
Amel Bouchemha, LAVIA Laboratory, University Echahid Cheikh Larbi Tebessi, Tebessa, Algeria; Email: amel.bouchemha@univ-tebessa.dz
Hanane Djellab, LTI, Laboratory of Guelma, University Echahid Cheikh Larbi Tebessi, Tebessa-Algeria; Email: hanane.djellab@univ-tebessa.dz
Mohamed Cherif Nait-Hamoud, LAVIA Laboratory, University Echahid Cheikh Larbi Tebessi, Tebessa, Algeria; Email: mohamed-cherif.nait-hamoud@univ-tebessa.dz
-
[1] Rinne M. and Tirkkonen O., Lte, the radio technology path towards 4G, Computer Communications, 33 (16), 1894-1906, 2010. https://doi.org/10.1016/j.comcom.2010.07.001.
-
[2] Nasralla M. M., Khan N. and Martini M. G., Content-aware downlink scheduling for LTE wireless systems: A survey and performance comparison of key approaches, Computer Communications, 130, 78-100, 2018. https://doi.org/10.1016/j.comcom.2018.08.009.
-
[3] Dahlman E., Parkvall S. and Skold J., 4G: LTE/LTE-Advanced for Mobile Broadband, Academic Press, 2011, 423-431, ISBN 9780123854896, https://doi.org/10.1016/B978-0-12-385489-6.00028-X.
-
[4] Priya L. R. and Soundar K. R., Lte: An enhanced hybrid domain downlink scheduling, Cognitive Systems Research 52, 550-555, 2018. https://doi.org/10.1016/j.cogsys.2018.07.013.
-
[5] Jain A., Lopez-Aguilera E. and Demirkol I., "Evolutionary 4G/5G Network Architecture Assisted Efficient Handover Signaling," in IEEE Access, 7, 256-283, 2019, https://doi.org/10.1109/ACCESS.2018.2885344.
-
[6] Erceg V., Greenstein L. J., Tjandra S. Y., Parkoff S. R., Gupta A., Kulic B., Julius A. A. and Bianchi R., Empirically based path loss model for wireless channels in suburban environments, IEEE Journal on Selected Areas in Communications 17(7), 1205-1211, 1999. https://doi.org/10.1109/49.778178.
-
[7] Phillips C., Sicker D. and Grunwald D., A survey of wireless path loss prediction and coverage mapping methods, IEEE Communications Surveys and Tutorials, 15(1),255-270, 2013. https://doi.org/10.1109/SURV.2012.022412.00172.
-
[8] Abhayawardhana V. S., Wassellt I. J., Crosby D., Sellars M. P. and Brown M. G., Comparison of empirical propagation path loss models for fixed wireless access systems, IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 1, 73-77, 2005. 2005. https://doi.org/10.1109/vetecs.2005.1543252.
-
[9] Kumar A., Mihovska A. D. and Prasad R., Dynamic pathloss model for place and time itinerant networks, Wireless Pers Communications 100, 641–652, 2018. https://doi.org/10.1007/ s11277-018-5261-0.
-
[10] Sulyman A., Nassar A., Samimi M., Maccartney G., Rappaport T. and Alsanie A., Radio propagation path loss models for 5g cellular networks in the 28 ghz and 38 ghz millimeter-wave bands, IEEE Communications Magazine 52(9), 78-86, 2014. https://doi.org/10.1109/ MCOM.2014.6894456.
-
[11] Akinbolati A. and Ajewole M. O., Investigation of path loss and modeling for digital terrestrial television over nigeria, Heliyon 6(6), 2020. https://doi.org/10.1016/j.heliyon.2020.e04101.
-
[12] Almalki F. A. and Angelides M. C., Empirical evolution of a propagation model for low altitude platforms, Chapter in book/Proceedings of Computing Conference, 1297-1304, 2018. https://doi.org/10.1109/SAI.2017.8252258.
-
[13] Ostlin E., Zepernick H. J. and Suzuki H., Macrocell path-loss prediction using artificial neural networks, IEEE Transactions on Vehicular Technology 59(6), 2735-2747, 2010. doi:10.1109/TVT.2010.2050502.
-
[14] Beire A. R., Pita H. and Cota N., Optimizing propagation models on railway communications using genetic algorithms, Procedia Technology 17, 50 – 57, 2014. https://doi.org/10.1016/j.protcy.2014.10.215.
-
[15] Chen Y. H. and Hsieh K. L., A dual least-square approach of tuning optimal propagation model for existing 3g radio network, 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, VIC, Australia, 2006, 2942-2946. doi:10.1109/vetecs.2006.1683407.
-
[16] Shabbir N., Sadiq M. T., Kashif H. and Ullah R., Comparison of radio propagation models for long term evolution (lte) network, International Journal of Next-Generation Networks, 3, 27–41, 2011. doi:10.5121/ijngn.2011.3303.
-
[17] Milanovi´c J., Rimac-Drlje S. and Majerski I., Radio wave propagation mechanisms and empirical models for fixed wireless access systems, Tehnicki Vjesnik, 17(1), 43-52, 2010.
-
[18] Mardeni R. and Kwan K. F., Optimization of hata propagation prediction model in suburban area in malaysia, Progress In Electromagnetics Research C 13, 91–106, 2010. doi: 10.2528/PIERC10011804.
-
[19] De Beelde B., Tanghe E., Plets D. and Joseph W., "Outdoor Channel Modeling at D-Band Frequencies for Future Fixed Wireless Access Applications," in IEEE Wireless Communications Letters, 11(11), 2355-2359,2022. doi: 10.1109/LWC.2022.3202921.
-
[20] Okumura Y., Ohmori E., Kawano T. and Fukuda K., Field strength and its variability in uhf and vhf land-mobile radio service, Review of the Electrical Communication Laboratory, 16, 825-873, 1968.
-
[21] Hata M., Empirical formula for propagation loss in land mobile radio services, IEEE Transactions on Vehicular Technology, 29 (3), 317-325, 1980. doi:10.1109/T-VT.1980.23859.
-
[22] Begovic P., Behlilovic N. and Avdic E., Applicability evaluation of okumura, ericsson9999 and winner propagation models for coverage planning in 3.5 ghz wimax systems, 19th IWSSIP, 256-260, 2012.
-
[23] Erceg V., Hari K.V.S., Smith M.S., Baum D.S. et al, Channel Models for Fixed Wireless Applications, Tech. rep. IEEE 802.16.3 Broadband Wireless Access Working Group, January 2001.
-
[24] Mahmood A., Khan S., Hussain S. and Zeeshan M., Performance analysis of multiuser downlink pd-noma under Sui fading channel models, IEEE Access 9, 52851- 52859, 2021. doi: 10.1109/ACCESS.2021.3070147.
-
[25] EET-Ericsson Engineering Tool, User reference guide. Ericsson Radio SystemAB, 1997.
-
[26] Surajudeen-Bakinde N. T., Faruk N., Popoola S. I., Salman M. A., Oloyede A. A., Olawoyin L. A. and Calafate C. T., Path loss predictions for multi-transmitter radio propagation in vhf bands using adaptive neuro-fuzzy inference system, Engineering Science and Technology, an International Journal, 21(4),679-692, 2018. https://doi.org/10.1016/j.jestch.2018.05.013.
-
[27] H. Chiroma, P. Nickolas, N. Faruk et al., Large scale survey for radio propagation in developing machine learning model for path losses in communication systems, Scientific Africa, 19, e01550, 2023. https://doi.org/10.1016/j.sciaf.2023.e01550.
-
[28] E. Ostlin, H.-.J. Zepernick, H. Suzuki, Macrocell, path-loss prediction using artificial neural networks, IEEE Trans. Veh. Technol., 59(6), 2735–2747, 2010. doi: 10.1109/TVT.2010.2050502.
-
[29] Moraitis N., Tsipi L., Vouyioukas D. et al. Performance evaluation of machine learning methods for path loss prediction in rural environment at 3.7 GHz. Wireless Netw 27, 2021, pp. 4169–4188, https://doi.org/10.1007/s11276-021-02682-3.
-
[30] Nafea S. and Hamza, E. K. Path loss optimization in WIMAX network using genetic algorithm. IRAQI Journal of computers, communications, control and systems engineering, 20 (1), 24-30, 2020, doi: 10.33103/uot.ijccce.20.1.3.
-
[31] Zhang Y.,Wen J., Yang G., He Z. and Wang J., Path loss prediction based on machine learning: Principle, method, and data expansion, Applied Sciences (Switzerland) 9 (9), 1908, 2019. doi:10.3390/app9091908.
-
[32] Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch Computat Methods Eng 29, 2531–2561, 2022. doi:10.1007/s11831-021-09694-4.
-
[33] Kennedy J. and Eberhart R., "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942-1948, 1995. doi:10.1109/ICNN.1995.488968.
-
[34] Marini F. and Walczak B., Particle swarm optimization (pso). a tutorial, Chemometrics and Intelligent Laboratory Systems 149, 153 -165, 2015. doi:10.1016/j.chemolab.2015.08.020.
-
[35] Wang D., Tan D. and Liu L., Particle swarm optimization algorithm: an overview, Soft Computing 22, 387–408, 2018. doi:10.1007/s00500-016-2474-6.
-
[36] Santhusitha D., Karunasingha K., Root mean square error or mean absolute error? Use their ratio as well, Information Sciences, 585, 609-629, 2022. doi : 10.1016/j.ins.2021.11.036.
-
[37] Igbinosa O.G., Okpeki U.K., Performance investigation of different pathloss models for a wireless communication system in Nigeria, Heliyon, vol. 5(5), 2019, https://doi.org/10.1016/j.heliyon.2019.e01656.