f Enhanced Wireless Communication Optimization with Neural Networks, Proximal Policy Optimization and Edge Computing for Latency and Energy Efficiency
FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Research Article |

Enhanced Wireless Communication Optimization with Neural Networks, Proximal Policy Optimization and Edge Computing for Latency and Energy Efficiency

Author(s): N. Kousika*, J. Babitha Thangamalar, N. Pritha, Beulah Jackson and M. Aiswarya

Publisher : FOREX Publication

Published : 30 June 2024

e-ISSN : 2347-470X

Page(s) : 721-726




N. Kousika*, Assistant Professor, Department of Computer Science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore. Tamil Nadu 641008, India; Email: kousika@skcet.ac.in

J. Babitha Thangamalar, Associate Professor, Department of Biomedical Engineering, P. S. R Engineering College, Sevalpatti, Sivakasi-626140, Tamil Nadu, India; Email: babithathangamalar@psr.edu.in

N. Pritha, Assistant Professor, Department of Electronics and Communication Engineering, Panimalar engineering college, Poonamallee, Chennai, Tamil Nadu 600123, India; Email: prithabe28@gmail.com

Beulah Jackson, Professor, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai-600 062, Tamil Nadu, India; Email: beulah.jack@gmail.com

M. Aiswarya, Assistant Professor, Karpagam Institute of Technology, Coimbatore-641105 Tamil Nadu, India; Email: aishu100896@gmail.com

    [1] Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE communications surveys & tutorials, 19(4), 2322-2358.
    [2] Walia, G. K., Kumar, M., & Gill, S. S. (2023). AI-empowered fog/edge resource management for IoT applications: A comprehensive review, research challenges and future perspectives. IEEE Communications Surveys & Tutorials.
    [3] Kolat, M., & Bécsi, T. (2023). Multi-Agent Reinforcement Learning for Highway Platooning. Electronics, 12(24), 4963.
    [4] Gu, H., Zhao, L., Han, Z., Zheng, G., & Song, S. (2023). AI-Enhanced Cloud-Edge-Terminal Collaborative Network: Survey, Applications, and Future Directions. IEEE Communications Surveys & Tutorials.
    [5] Sun, Z., Sun, G., Liu, Y., Wang, J., & Cao, D. (2023). BARGAIN-MATCH: A Game Theoretical Approach for Resource Allocation and Task Offloading in Vehicular Edge Computing Networks. IEEE Transactions on Mobile Computing.
    [6] Mu, L., Li, Z., Xiao, W., Zhang, R., Wang, P., Liu, T., ... & Li, K. (2023). A Fine-Grained End-to-End Latency Optimization Framework for Wireless Collaborative Inference. IEEE Internet of Things Journal.
    [7] Wazirali, R., Yaghoubi, E., Abujazar, M. S. S., Ahmad, R., & Vakili, A. H. (2023). State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Electric power systems research, 225, 109792.
    [8] Hao, Y., Wang, J., Huo, D., Guizani, N., Hu, L., & Chen, M. (2023). Digital twin-assisted urllc-enabled task offloading in mobile edge network via robust combinatorial optimization. IEEE Journal on Selected Areas in Communications.
    [9] Yang, J., Shah, A. A., & Pezaros, D. (2023). A Survey of Energy Optimization Approaches for Computational Task Offloading and Resource Allocation in MEC Networks. Electronics, 12(17), 3548.
    [10] Zhao, J., Feng, X., Pang, Q., Fowler, M., Lian, Y., Ouyang, M., & Burke, A. F. (2024). Battery safety: Machine learning-based prognostics. Progress in Energy and Combustion Science, 102, 101142.
    [11] Chen, M., Qian, Z., Boers, N., Jakeman, A. J., Kettner, A. J., Brandt, M., ... & Lü, G. (2023). Iterative integration of deep learning in hybrid Earth surface system modelling. Nature Reviews Earth & Environment, 4(8), 568-581.
    [12] Khan, M. M. I., & Nencioni, G. (2023). Resource Allocation in Networking and Computing Systems: a Security and Dependability Perspective. IEEE Access.
    [13] Satyanarayana, P., Diwakar, G., Subbayamma, B. V., Kumar, N. P. S., Arun, M., & Gopalakrishnan, S. (2023). Comparative analysis of new meta-heuristic-variants for privacy preservation in wireless mobile adhoc networks for IoT applications. Computer Communications, 198, 262-281.
    [14] Periannasamy, S. M., Thangavel, C., Latha, S., Reddy, G. V., Ramani, S., Phad, P. V., ... & Gopalakrishnan, S. (2022, July). Analysis of Artificial Intelligence Enabled Intelligent Sixth Generation (6G) Wireless Communication Networks. In 2022 IEEE International Conference on Data Science and Information System (ICDSIS) (pp. 1-8). IEEE.

N. Kousika, J. Babitha Thangamalar, N. Pritha, Beulah Jackson, and M. Aiswarya (2024), Enhanced Wireless Communication Optimization with Neural Networks, Proximal Policy Optimization and Edge Computing for Latency and Energy Efficiency. IJEER 12(2), 721-726. DOI: 10.37391/IJEER.120250.