Review Article |
Deep Learning-Driven Behavioral Analysis for Real-Time Threat Detection and Classification in Network Traffic
Author(s): G. Nagaraju1, Sridhar Gujjeti2, M Varaprasad Rao3, Dr Anitha Patil4, and Nagendar Yamsani5
Published In : International Journal of Electrical and Electronics Research (IJEER) Volume 13, Issue 1
Publisher : FOREX Publication
Published : 30 March 2025
e-ISSN : 2347-470X
Page(s) : 80-88
Abstract
With the evolution of digital spaces, cyber threats now evolve to more complex forms, requiring innovative solutions for real-time intrusion detection and classification for network traffic. Cybersecurity is also critical for building resilient infrastructure, which is one of the goals of the United Nations, which emphasizes secure and sustainable digital ecosystems. This research proposes a framework powered by deep learning that employs an enhanced fully connected neural network (EFNN) to analyze behavior and detect threats. The proposed algorithm, Enhanced Fully Connected Neural Network-Based Threat Detection (EFNN-TD), fuses advanced data preprocessing with FCBF-based feature selection and SMOTE-based handling of class imbalance. We introduce a novel multi-featured attentive framework for generating practical and compact representations for multi-class classification in anomaly correlation. It identifies and classifies various network intrusions efficiently with precision and recall, which are required to reduce false alarms and detect all threats. The proposed system can aid in safeguarding digital infrastructures through real-time monitoring and decision-making, thus supporting the global imperative for promoting secure, robust, and sustainable technological advancement to foster economic growth and societal development.
Keywords: Behavior-Based Firewalls
, Deep Learning
, Network Traffic Analysis
, Real-Time Threat Detection
, Anomaly Classification
.
G. Nagaraju, Assistant Professor, Department of CSE(AIML&IOT), VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India; Email: nagaraju.gujjeti@gmail.com
Sridhar Gujjeti, Assistant Professor, Department of CSE, Kakatiya Institute of Technology & Science, Warangal, India; Email: gs.cse@kitsw.ac.in
M Varaprasad Rao, Department of CSE (DS) Designation: Professor Affiliation: CVR College of Engineering, Hyderabad, Telangana, India; Email: varam78@gmail.com
Dr Anitha Patil, Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Hyderabad-500075, Telangana, India; Email: panitha243@gmail.com
Nagendar Yamsani, School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, India; Email: nagendar.yamsani@gmail.com
-
[1] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K., Karim, S. H. T., Rashidi, S., … Rahmani, A. M. (2021). Deep Learning-Based Intrusion Detection Systems: A Systematic Review. IEEE Access, 9, pp.101574–101599. doi:10.1109/access.2021.3097247
-
[2] Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50, pp.1-19. doi:10.1016/j.jisa.2019.102419
-
[3] Wang, Z., Liu, Y., He, D., & Chan, S. (2021). Intrusion detection methods are based on an integrated deep-learning model. Computers & Security, 103, pp.1-34. doi:10.1016/j.cose.2021.102177
-
[4] Mighan, S. N., & Kahani, M. (2020). A novel scalable intrusion detection system based on deep learning. International Journal of Information Security. pp.1-17. doi:10.1007/s10207-020-00508-5
-
[5] Su, T., Sun, H., Zhu, J., Wang, S., & Li, Y. (2020). BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset. IEEE Access, 8, pp.29575–29585. doi:10.1109/access.2020.2972627
-
[6] Al-Emadi, S., Al-Mohannadi, A., & Al-Senaid, F. (2020). Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). pp.171-176. doi:10.1109/iciot48696.2020.9089524
-
[7] Aechan Kim, Mohyun Park, And Dong Hoon Lee. (2020). AI-IDS: Application of Deep Learning to Real-Time Web Intrusion Detection. IEEE Access. 8, pp.70245-70261. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2020.2986882.
-
[8] Lan Liu, Pengcheng Wang, Jun Lin, And Langzhou Liu. (2020). Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning. IEEE Access. 9, pp.7550-7563. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2020.3048198.
-
[9] Rashid, A., Siddique, M. J., & Ahmed, S. M. (2020). Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). pp.1-9. doi:10.1109/icacs47775.2020.9055946
-
[10] Liu, C., Gu, Z., & Wang, J. (2021). A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning. IEEE Access, 9, pp.75729–75740. doi:10.1109/access.2021.3082147.
-
[11] Devrim Akguna, Selman Hizal, Unal Cavusoglu. (2022). A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Elsevier. 118, pp.1-13. https://doi.org/10.1016/j.cose.2022.102748.
-
[12] Haggag, M., Tantawy, M. M., & El-Soudani, M. M. S. (2020). Implementing A Deep Learning Model for Intrusion Detection on Apache Spark Platform. IEEE Access, 1–1. doi:10.1109/access.2020.3019931
-
[13] Yang, L., Li, J., Yin, L., Sun, Z., Zhao, Y., & Li, Z. (2020). Real-Time Intrusion Detection in Wireless Network: A Deep Learning-Based Intelligent Mechanism. IEEE Access, 8, pp.170128–170139. doi:10.1109/access.2020.3019973
-
[14] Ahmed Abdelkhalek, Maggie Mashaly. (2023). Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning. Springer. 79, p.10611–10644. https://doi.org/10.1007/s11227-023-05073-x.
-
[15] Asmaa Halbouni, Teddy Surya Gunawan, Mohamed Hadi Habaebi. (2022). CNN-LSTM: Hybrid Deep Neural Network for Network Intrusion Detection System. IEEE Access. 10, pp.99837-99849. Digital Object Identifier 10.1109/ACCESS.2022.3206425.
-
[16] Andresini, G., Appice, A., Mauro, N. D., Loglisci, C., & Malerba, D. (2020). Multi-Channel Deep Feature Learning for Intrusion Detection. IEEE Access, 8, pp.53346–53359. doi:10.1109/access.2020.2980937
-
[17] Folino, F., Folino, G., Guarascio, M., Pisani, F. S., & Pontieri, L. (2021). On learning effective ensembles of deep neural networks for intrusion detection. Information Fusion, 72, pp.48–69. doi:10.1016/j.inffus.2021.02.007
-
[18] V. Gowdhaman, R. Dhanapal. (2021). An intrusion detection system for wireless sensor networks using deep neural network. Springer., pp.1-9. [Online]. Available at: https://doi.org/10.1007/s00500-021-06473-y.
-
[19] Rachid Ben Said, Zakaria Sabir, And Iman Askerzade. (2023). CNN-BiLSTM: A Hybrid Deep Learning Approach for Network Intrusion Detection System in Software-Defined Networking with H. IEEE Access. 11, p.138732. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2023.3340142.
-
[20] Zihan Wu, Hong Zhang, Penghai Wang, And Zhibo Sun. (2022). Intrusion Monitoring in Military Surveillance Applications using Wireless Sensor Networks (WSNs) with Deep Learning for. IEEE Access. 10, pp.64375-64387. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2022.3182333.
-
[21] Imtiaz Ullah And Qusay H. Mahmoud. (2021). Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks. IEEE Access. 9, pp.103906-103926. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2021.3094024.
-
[22] Al-Abassi, A., Karimipour, H., Dehghantanha, A., & Parizi, R. M. (2020). An Ensemble Deep Learning-based Cyber-Attack Detection in Industrial Control System. IEEE Access, pp.1–10. doi:10.1109/access.2020.2992249
-
[23] Siniosoglou, I., Radoglou-Grammatikis, P., Efstathopoulos, G., Fouliras, P., & Sarigiannidis, P. (2021). A Unified Deep Learning Anomaly Detection and Classification Approach for Smart Grid Environments. IEEE Transactions on Network and Service Management, 18(2), pp.1137–1151. doi:10.1109/tnsm.2021.3078381
-
[24] Mendonca, R. V., Teodoro, A. A. M., Rosa, R. L., Saadi, M., Melgarejo, D. C., Nardelli, P. H. J., & Rodriguez, D. Z. (2021). Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network. IEEE Access, 9, pp.61024–61034. doi:10.1109/access.2021.3074664
-
[25] Tian, Q., Han, D., Li, K.-C., Liu, X., Duan, L., & Castiglione, A. (2020). An intrusion detection approach based on an improved deep belief network. Applied Intelligence, 50(10), pp.3162–3178. doi:10.1007/s10489-020-01694-4
-
[26] Kaur, S., & Singh, M. (2019). Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks. Neural Computing and Applications. pp.1-19. doi:10.1007/s00521-019-04187-9
-
[27] Yu, Y., & Bian, N. (2020). An Intrusion Detection Method Using Few-Shot Learning. IEEE Access, 8, 49730–49740. doi:10.1109/access.2020.2980136
-
[28] Wang, Z., Zeng, Y., Liu, Y., & Li, D. (2021). Deep Belief Network Integrating Improved Kernel-Based Extreme Learning Machine for Network Intrusion Detection. IEEE Access, 9, pp.16062–16091. doi:10.1109/access.2021.3051074
-
[29] Merve Ozkan-Okay, Refik Samet, Ömer Aslan, And Deepti Gupta. (2021). A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas p. IEEE Access. 9, pp.157727-157760. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2021.3129336.
-
[30] Jiang, K., Wang, W., Wang, A., & Wu, H. (2020). Network Intrusion Detection Combined Hybrid Sampling with Deep Hierarchical Network. IEEE Access, 8, pp.32464–32476. doi:10.1109/access.2020.2973730
-
[31] Sultan Zavrak And Murat İskefiyeli. (2020). An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks. IEEE Access. 8, pp.108346-108358. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2020.3001350.
-
[32] Drewek-Ossowicka, A., Pietrołaj, M., & Rumiński, J. (2020). A survey of neural networks usage for intrusion detection systems. Journal of Ambient Intelligence and Humanized Computing. pp.1-18. doi:10.1007/s12652-020-02014-x
-
[33] Wei Wang, Songlei Jian, Yusong Tan, Qingbo Wu, Chenlin Huang. (2022). Representation learning-based network intrusion detection system by capturing explicit and implicit feature interactions. Elsevier. 112, pp.1-14. [Online]. Available at: https://doi.org/10.1016/j.cose.2021.102537.
-
[34] Park, D., Kim, S., Kwon, H., Shin, D., & Shin, D. (2021). Host-Based Intrusion Detection Model Using Siamese Network. IEEE Access, 9, pp.76614–76623. doi:10.1109/access.2021.3082160.
-
[35] Wang, W., Du, X., Shan, D., Qin, R., & Wang, N. (2020). Cloud Intrusion Detection Method Based on Stacked Contractive Auto-Encoder and Support Vector Machine. IEEE Transactions on Cloud Computing, pp.1–14. doi:10.1109/tcc.2020.3001017
-
[36] Liu, C., Liu, Y., Yan, Y., & Wang, J. (2020). An Intrusion Detection Model with Hierarchical Attention Mechanism. IEEE Access, 8, pp.67542–67554. https://doi.org/10.1109/access.2020.2983568
-
[37] Zhen Yanga, Xiaodong Liua , Tong Li a, Di Wua , Jinjiang Wanga, Yunwei Zhao. (2022). A systematic literature review of methods and datasets for anomaly-based network intrusion detection. Elsevier. 16, pp.1-20. [Online]. Available at: https://doi.org/10.1016/j.cose.2022.102675.
-
[38] Yang, Y., Zheng, K., Wu, B., Yang, Y., & Wang, X. (2020). Network Intrusion Detection Based on Supervised Adversarial Variational Auto-Encoder with Regularization. IEEE Access, 8, pp.42169–42184. doi:10.1109/access.2020.2977007
-
[39] Devan, P., & Khare, N. (2020). An efficient XGBoost–DNN-based classification model for network intrusion detection system. Neural Computing and Applications, 32(16), pp.12499–12514. doi:10.1007/s00521-020-04708-x
-
[40] ElSayed, M. S., Le-Khac, N.-A., Albahar, M. A., & Jurcut, A. (2021). A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique. Journal of Network and Computer Applications, 191, pp.1-18. doi:10.1016/j.jnca.2021.103160
-
[41] CIC-IDS2017 dataset. Retrieved from https://www.unb.ca/cic/datasets/ids-2017.html
-
[42] Lansky, J., 2020. Deep learning-based intrusion detection systems: categorization and evaluation of strategies. International Journal of Network Security, 22(3), pp.250-258.
-
[43] Kim, Y., Park, J., and Lee, K., 2021. CNN-LSTM-based intrusion detection for real-time web assault detection. Cybersecurity Journal, 15(2), pp.345-356.
-
[44] Su, T., 2019. A Bidirectional Attention Mechanism for Network Anomaly Detection: BAT-MC. Journal of Cyber Security, 12(5), pp.200-212.
-
[45] Wang, C., Zhao, L., and Xu, H., 2020. Combining SDAE-ELM models for improving classification accuracy in network security. Journal of Machine Learning in Networks, 18(3), pp.150-160.
-
[46] Liu, H., Zhang, X., and Chen, Y., 2021. Addressing Class Imbalance in Intrusion Detection Systems with DSSTE. Computers & Security, 103, pp.230-245.