FOREX Press I. J. of Electrical & Electronics Research
Support Open Access

Review Article |

Deep Learning-Driven Behavioral Analysis for Real-Time Threat Detection and Classification in Network Traffic

Author(s): G. Nagaraju1, Sridhar Gujjeti2, M Varaprasad Rao3, Dr Anitha Patil4, and Nagendar Yamsani5

Publisher : FOREX Publication

Published : 30 March 2025

e-ISSN : 2347-470X

Page(s) : 80-88




G. Nagaraju, Assistant Professor, Department of CSE(AIML&IOT), VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India; Email: nagaraju.gujjeti@gmail.com

Sridhar Gujjeti, Assistant Professor, Department of CSE, Kakatiya Institute of Technology & Science, Warangal, India; Email: gs.cse@kitsw.ac.in

M Varaprasad Rao, Department of CSE (DS) Designation: Professor Affiliation: CVR College of Engineering, Hyderabad, Telangana, India; Email: varam78@gmail.com

Dr Anitha Patil, Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Hyderabad-500075, Telangana, India; Email: panitha243@gmail.com

Nagendar Yamsani, School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, India; Email: nagendar.yamsani@gmail.com

    [1] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K., Karim, S. H. T., Rashidi, S., … Rahmani, A. M. (2021). Deep Learning-Based Intrusion Detection Systems: A Systematic Review. IEEE Access, 9, pp.101574–101599. doi:10.1109/access.2021.3097247
    [2] Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications, 50, pp.1-19. doi:10.1016/j.jisa.2019.102419
    [3] Wang, Z., Liu, Y., He, D., & Chan, S. (2021). Intrusion detection methods are based on an integrated deep-learning model. Computers & Security, 103, pp.1-34. doi:10.1016/j.cose.2021.102177
    [4] Mighan, S. N., & Kahani, M. (2020). A novel scalable intrusion detection system based on deep learning. International Journal of Information Security. pp.1-17. doi:10.1007/s10207-020-00508-5
    [5] Su, T., Sun, H., Zhu, J., Wang, S., & Li, Y. (2020). BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset. IEEE Access, 8, pp.29575–29585. doi:10.1109/access.2020.2972627
    [6] Al-Emadi, S., Al-Mohannadi, A., & Al-Senaid, F. (2020). Using Deep Learning Techniques for Network Intrusion Detection. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). pp.171-176. doi:10.1109/iciot48696.2020.9089524
    [7] Aechan Kim, Mohyun Park, And Dong Hoon Lee. (2020). AI-IDS: Application of Deep Learning to Real-Time Web Intrusion Detection. IEEE Access. 8, pp.70245-70261. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2020.2986882.
    [8] Lan Liu, Pengcheng Wang, Jun Lin, And Langzhou Liu. (2020). Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning. IEEE Access. 9, pp.7550-7563. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2020.3048198.
    [9] Rashid, A., Siddique, M. J., & Ahmed, S. M. (2020). Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). pp.1-9. doi:10.1109/icacs47775.2020.9055946
    [10] Liu, C., Gu, Z., & Wang, J. (2021). A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning. IEEE Access, 9, pp.75729–75740. doi:10.1109/access.2021.3082147.
    [11] Devrim Akguna, Selman Hizal, Unal Cavusoglu. (2022). A new DDoS attacks intrusion detection model based on deep learning for cybersecurity. Elsevier. 118, pp.1-13. https://doi.org/10.1016/j.cose.2022.102748.
    [12] Haggag, M., Tantawy, M. M., & El-Soudani, M. M. S. (2020). Implementing A Deep Learning Model for Intrusion Detection on Apache Spark Platform. IEEE Access, 1–1. doi:10.1109/access.2020.3019931
    [13] Yang, L., Li, J., Yin, L., Sun, Z., Zhao, Y., & Li, Z. (2020). Real-Time Intrusion Detection in Wireless Network: A Deep Learning-Based Intelligent Mechanism. IEEE Access, 8, pp.170128–170139. doi:10.1109/access.2020.3019973
    [14] Ahmed Abdelkhalek, Maggie Mashaly. (2023). Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning. Springer. 79, p.10611–10644. https://doi.org/10.1007/s11227-023-05073-x.
    [15] Asmaa Halbouni, Teddy Surya Gunawan, Mohamed Hadi Habaebi. (2022). CNN-LSTM: Hybrid Deep Neural Network for Network Intrusion Detection System. IEEE Access. 10, pp.99837-99849. Digital Object Identifier 10.1109/ACCESS.2022.3206425.
    [16] Andresini, G., Appice, A., Mauro, N. D., Loglisci, C., & Malerba, D. (2020). Multi-Channel Deep Feature Learning for Intrusion Detection. IEEE Access, 8, pp.53346–53359. doi:10.1109/access.2020.2980937
    [17] Folino, F., Folino, G., Guarascio, M., Pisani, F. S., & Pontieri, L. (2021). On learning effective ensembles of deep neural networks for intrusion detection. Information Fusion, 72, pp.48–69. doi:10.1016/j.inffus.2021.02.007
    [18] V. Gowdhaman, R. Dhanapal. (2021). An intrusion detection system for wireless sensor networks using deep neural network. Springer., pp.1-9. [Online]. Available at: https://doi.org/10.1007/s00500-021-06473-y.
    [19] Rachid Ben Said, Zakaria Sabir, And Iman Askerzade. (2023). CNN-BiLSTM: A Hybrid Deep Learning Approach for Network Intrusion Detection System in Software-Defined Networking with H. IEEE Access. 11, p.138732. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2023.3340142.
    [20] Zihan Wu, Hong Zhang, Penghai Wang, And Zhibo Sun. (2022). Intrusion Monitoring in Military Surveillance Applications using Wireless Sensor Networks (WSNs) with Deep Learning for. IEEE Access. 10, pp.64375-64387. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2022.3182333.
    [21] Imtiaz Ullah And Qusay H. Mahmoud. (2021). Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks. IEEE Access. 9, pp.103906-103926. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2021.3094024.
    [22] Al-Abassi, A., Karimipour, H., Dehghantanha, A., & Parizi, R. M. (2020). An Ensemble Deep Learning-based Cyber-Attack Detection in Industrial Control System. IEEE Access, pp.1–10. doi:10.1109/access.2020.2992249
    [23] Siniosoglou, I., Radoglou-Grammatikis, P., Efstathopoulos, G., Fouliras, P., & Sarigiannidis, P. (2021). A Unified Deep Learning Anomaly Detection and Classification Approach for Smart Grid Environments. IEEE Transactions on Network and Service Management, 18(2), pp.1137–1151. doi:10.1109/tnsm.2021.3078381
    [24] Mendonca, R. V., Teodoro, A. A. M., Rosa, R. L., Saadi, M., Melgarejo, D. C., Nardelli, P. H. J., & Rodriguez, D. Z. (2021). Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network. IEEE Access, 9, pp.61024–61034. doi:10.1109/access.2021.3074664
    [25] Tian, Q., Han, D., Li, K.-C., Liu, X., Duan, L., & Castiglione, A. (2020). An intrusion detection approach based on an improved deep belief network. Applied Intelligence, 50(10), pp.3162–3178. doi:10.1007/s10489-020-01694-4
    [26] Kaur, S., & Singh, M. (2019). Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks. Neural Computing and Applications. pp.1-19. doi:10.1007/s00521-019-04187-9
    [27] Yu, Y., & Bian, N. (2020). An Intrusion Detection Method Using Few-Shot Learning. IEEE Access, 8, 49730–49740. doi:10.1109/access.2020.2980136
    [28] Wang, Z., Zeng, Y., Liu, Y., & Li, D. (2021). Deep Belief Network Integrating Improved Kernel-Based Extreme Learning Machine for Network Intrusion Detection. IEEE Access, 9, pp.16062–16091. doi:10.1109/access.2021.3051074
    [29] Merve Ozkan-Okay, Refik Samet, Ömer Aslan, And Deepti Gupta. (2021). A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas p. IEEE Access. 9, pp.157727-157760. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2021.3129336.
    [30] Jiang, K., Wang, W., Wang, A., & Wu, H. (2020). Network Intrusion Detection Combined Hybrid Sampling with Deep Hierarchical Network. IEEE Access, 8, pp.32464–32476. doi:10.1109/access.2020.2973730
    [31] Sultan Zavrak And Murat İskefiyeli. (2020). An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks. IEEE Access. 8, pp.108346-108358. [Online]. Available at: Digital Object Identifier 10.1109/ACCESS.2020.3001350.
    [32] Drewek-Ossowicka, A., Pietrołaj, M., & Rumiński, J. (2020). A survey of neural networks usage for intrusion detection systems. Journal of Ambient Intelligence and Humanized Computing. pp.1-18. doi:10.1007/s12652-020-02014-x
    [33] Wei Wang, Songlei Jian, Yusong Tan, Qingbo Wu, Chenlin Huang. (2022). Representation learning-based network intrusion detection system by capturing explicit and implicit feature interactions. Elsevier. 112, pp.1-14. [Online]. Available at: https://doi.org/10.1016/j.cose.2021.102537.
    [34] Park, D., Kim, S., Kwon, H., Shin, D., & Shin, D. (2021). Host-Based Intrusion Detection Model Using Siamese Network. IEEE Access, 9, pp.76614–76623. doi:10.1109/access.2021.3082160.
    [35] Wang, W., Du, X., Shan, D., Qin, R., & Wang, N. (2020). Cloud Intrusion Detection Method Based on Stacked Contractive Auto-Encoder and Support Vector Machine. IEEE Transactions on Cloud Computing, pp.1–14. doi:10.1109/tcc.2020.3001017
    [36] Liu, C., Liu, Y., Yan, Y., & Wang, J. (2020). An Intrusion Detection Model with Hierarchical Attention Mechanism. IEEE Access, 8, pp.67542–67554. https://doi.org/10.1109/access.2020.2983568
    [37] Zhen Yanga, Xiaodong Liua , Tong Li a, Di Wua , Jinjiang Wanga, Yunwei Zhao. (2022). A systematic literature review of methods and datasets for anomaly-based network intrusion detection. Elsevier. 16, pp.1-20. [Online]. Available at: https://doi.org/10.1016/j.cose.2022.102675.
    [38] Yang, Y., Zheng, K., Wu, B., Yang, Y., & Wang, X. (2020). Network Intrusion Detection Based on Supervised Adversarial Variational Auto-Encoder with Regularization. IEEE Access, 8, pp.42169–42184. doi:10.1109/access.2020.2977007
    [39] Devan, P., & Khare, N. (2020). An efficient XGBoost–DNN-based classification model for network intrusion detection system. Neural Computing and Applications, 32(16), pp.12499–12514. doi:10.1007/s00521-020-04708-x
    [40] ElSayed, M. S., Le-Khac, N.-A., Albahar, M. A., & Jurcut, A. (2021). A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique. Journal of Network and Computer Applications, 191, pp.1-18. doi:10.1016/j.jnca.2021.103160
    [41] CIC-IDS2017 dataset. Retrieved from https://www.unb.ca/cic/datasets/ids-2017.html
    [42] Lansky, J., 2020. Deep learning-based intrusion detection systems: categorization and evaluation of strategies. International Journal of Network Security, 22(3), pp.250-258.
    [43] Kim, Y., Park, J., and Lee, K., 2021. CNN-LSTM-based intrusion detection for real-time web assault detection. Cybersecurity Journal, 15(2), pp.345-356.
    [44] Su, T., 2019. A Bidirectional Attention Mechanism for Network Anomaly Detection: BAT-MC. Journal of Cyber Security, 12(5), pp.200-212.
    [45] Wang, C., Zhao, L., and Xu, H., 2020. Combining SDAE-ELM models for improving classification accuracy in network security. Journal of Machine Learning in Networks, 18(3), pp.150-160.
    [46] Liu, H., Zhang, X., and Chen, Y., 2021. Addressing Class Imbalance in Intrusion Detection Systems with DSSTE. Computers & Security, 103, pp.230-245.

G. Nagaraju, Sridhar Gujjeti, M Varaprasad Rao, Dr Anitha Patil, and Nagendar Yamsani (2025), Deep Learning-Driven Behavioral Analysis for Real-Time Threat Detection and Classification in Network Traffic . IJEER 13(1), 80-88. DOI: 10.37391/IJEER.130112.